Codeforces Round #248 (Div. 1) B. Nanami's Digital Board 暴力 前缀和

本文介绍了一个基于01矩阵的游戏挑战,包含两种操作:翻转指定位置的状态或查询以该位置为边界的最大全1矩形面积。通过维护四个方向的最大延伸长度并使用单调栈的思想进行解答。

B. Nanami's Digital Board

题目连接:

http://www.codeforces.com/contest/434/problem/B

Description

Nanami is an expert at playing games. This day, Nanami's good friend Hajime invited her to watch a game of baseball. Unwilling as she was, she followed him to the stadium. But Nanami had no interest in the game, so she looked around to see if there was something that might interest her. That's when she saw the digital board at one end of the stadium.

The digital board is n pixels in height and m pixels in width, every pixel is either light or dark. The pixels are described by its coordinate. The j-th pixel of the i-th line is pixel (i, j). The board displays messages by switching a combination of pixels to light, and the rest to dark. Nanami notices that the state of the pixels on the board changes from time to time. At certain times, certain pixels on the board may switch from light to dark, or from dark to light.

Nanami wonders, what is the area of the biggest light block such that a specific pixel is on its side. A light block is a sub-rectangle of the board, in which all pixels are light. Pixel (i, j) belongs to a side of sub-rectangle with (x1, y1) and (x2, y2) as its upper-left and lower-right vertex if and only if it satisfies the logical condition:

((i = x1 or i = x2) and (y1 ≤ j ≤ y2)) or ((j = y1 or j = y2) and (x1 ≤ i ≤ x2)).
Nanami has all the history of changing pixels, also she has some questions of the described type, can you answer them?

Input

The first line contains three space-separated integers n, m and q (1 ≤ n, m, q ≤ 1000) — the height and width of the digital board, and the number of operations.

Then follow n lines, each line containing m space-separated integers. The j-th integer of the i-th line is ai, j — the initial state of pixel (i, j).

If ai, j = 0, pixel (i, j) is initially dark.
If ai, j = 1, pixel (i, j) is initially light.
Then follow q lines, each line containing three space-separated integers op, x, and y (1 ≤ op ≤ 2; 1 ≤ x ≤ n; 1 ≤ y ≤ m), describing an operation.

If op = 1, the pixel at (x, y) changes its state (from light to dark or from dark to light).
If op = 2, Nanami queries the biggest light block with pixel (x, y) on its side.

Output

For each query, print a single line containing one integer — the answer to Nanami's query.

Sample Input

3 4 5
0 1 1 0
1 0 0 1
0 1 1 0
2 2 2
2 1 2
1 2 2
1 2 3
2 2 2

Sample Output

0
2
6

Hint

题意

给你一个01矩阵,然后有两个操作,1是将x y取反,2是问以x,y为边界的最大全1矩形的面积是多少

题解:

其实就是瞎暴力……

一看数据范围,只要能做到修改操作是o(n)和查询操作是o(n)的就好了

这个直接用单调栈那种思想,直接暴力去莽一波就好了

对于每一个格子维护四个值,l[x][y],r[x][y],u[x][y],d[x][y]表示这个格子最多往四个方向延展多少

代码

#include<bits/stdc++.h>
using namespace std;
const int maxn = 1005;
int a[maxn][maxn],n,m,q,up[maxn][maxn],down[maxn][maxn],l[maxn][maxn],r[maxn][maxn];
int x,y,op;
void update()
{
    a[x][y]=1-a[x][y];
    for(int j=1;j<=m;j++)
        if(a[x][j])
            l[x][j]=l[x][j-1]+1;
        else
            l[x][j]=0;
    for(int j=m;j>=1;j--)
        if(a[x][j])
            r[x][j]=r[x][j+1]+1;
        else
            r[x][j]=0;
    for(int i=1;i<=n;i++)
        if(a[i][y])
            up[i][y]=up[i-1][y]+1;
        else
            up[i][y]=0;
    for(int i=n;i>=1;i--)
        if(a[i][y])
            down[i][y]=down[i+1][y]+1;
        else
            down[i][y]=0;
}
void query()
{
    if(a[x][y]==0)
    {
        printf("0\n");
        return;
    }
    int ans = 0;
    int U=1e9,D=1e9,L=1e9,R=1e9;
    for(int i=y;i>=1;i--)
    {
        U=min(U,up[x][i]);
        D=min(D,down[x][i]);
        ans=max(ans,(U+D-1)*(y-i+1));
    }
    U=1e9,D=1e9,L=1e9,R=1e9;
    for(int i=y;i<=m;i++)
    {
        U=min(U,up[x][i]);
        D=min(D,down[x][i]);
        ans=max(ans,(U+D-1)*(i-y+1));
    }
    U=1e9,D=1e9,L=1e9,R=1e9;
    for(int i=x;i>=1;i--)
    {
        L=min(L,l[i][y]);
        R=min(R,r[i][y]);
        ans=max(ans,(L+R-1)*(x-i+1));
    }
    U=1e9,D=1e9,L=1e9,R=1e9;
    for(int i=x;i<=n;i++)
    {
        L=min(L,l[i][y]);
        R=min(R,r[i][y]);
        ans=max(ans,(L+R-1)*(i-x+1));
    }
    printf("%d\n",ans);
}
int main()
{
    scanf("%d%d%d",&n,&m,&q);
    for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++)
            scanf("%d",&a[i][j]);
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=m;j++)
            if(a[i][j])
                l[i][j]=l[i][j-1]+1;
        for(int j=m;j>=1;j--)
            if(a[i][j])
                r[i][j]=r[i][j+1]+1;
    }
    for(int j=1;j<=m;j++)
    {
        for(int i=1;i<=n;i++)
            if(a[i][j])
                up[i][j]=up[i-1][j]+1;
        for(int i=n;i>=1;i--)
            if(a[i][j])
                down[i][j]=down[i+1][j]+1;
    }
    for(int i=1;i<=q;i++)
    {
        scanf("%d%d%d",&op,&x,&y);
        if(op==1)update();
        else query();
    }
}

转载于:https://www.cnblogs.com/qscqesze/p/5557604.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值