【[六省联考2017]寿司餐厅】

题目

发现数据范围非常小就可以猜想这是一个网络流

又发现权值有正有负,就可以猜想这是一个最大权闭合子图

选择一个区间\([i,j]\)就必须要选择其所有子区间,这也非常符合最大权闭合子图的模型

但是我们枚举\([i,j]\)像所有子区间连边显然并不是非常可取,因为这样会建出\(O(n^4)\)级别的边来

所以实际上我们只需要让\([i,j]\)\([i+1,j]\)\([i,j-1]\)连容量为\(inf\)边就可以了,这样一直连下去就相当于对所有的子区间连边了

常规操作还有权值为正就由\(S\)连,权值为负就去连\(T\)

之后我们对于编号为\(x\)的寿司我们开一个点,向汇点连\(mx^2\)的边,每个种类为\(x\)的单点向汇点再连\(x\)的边就好了

代码

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
#define re register
#define maxn 6005
#define LL long long
#define inf 999999999
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
inline int read()
{
    char c=getchar();int x=0,r=1;
    while(c<'0'||c>'9') {if(c=='-') r=-1;c=getchar();}
    while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=getchar();return r*x;
}
struct E{int v,nxt,w,f;}e[2000005];
int S,T,n,m,num=1,tot,cnt,ans;
int d[maxn],cur[maxn],head[maxn];
int a[105],b[105],val[105][105],w[105],to[105][105];
inline void add_edge(int x,int y,int z) {e[++num].v=y;e[num].nxt=head[x];head[x]=num;e[num].w=z;}
inline void add(int x,int y,int z) {add_edge(x,y,z),add_edge(y,x,0);}
inline int BFS()
{
    std::queue<int> q;
    for(re int i=S;i<=T;i++) d[i]=0,cur[i]=head[i];
    q.push(S);d[S]=1;
    while(!q.empty())
    {
        int k=q.front();q.pop();
        for(re int i=head[k];i;i=e[i].nxt)
        if(!d[e[i].v]&&e[i].w>e[i].f) d[e[i].v]=d[k]+1,q.push(e[i].v);
    }
    return d[T];
} 
int dfs(int x,int now)
{
    if(x==T||!now) return now;
    int flow=0,ff;
    for(re int& i=cur[x];i;i=e[i].nxt)
    if(d[x]+1==d[e[i].v])
    {
        ff=dfs(e[i].v,min(e[i].w-e[i].f,now));
        if(ff<=0) continue;
        now-=ff,flow+=ff;
        e[i].f+=ff,e[i^1].f-=ff;
        if(!now) break;
    }
    return flow;
}
inline int find(int x) 
{
    int l=1,r=tot;
    while(l<=r) {int mid=l+r>>1;if(b[mid]==x) return mid;if(b[mid]>x) r=mid-1;else l=mid+1;}
    return 0;
}
int main()
{
    n=read(),m=read();
    for(re int i=1;i<=n;i++) w[i]=b[i]=a[i]=read();
    std::sort(b+1,b+n+1);tot=std::unique(b+1,b+n+1)-b-1;
    for(re int i=1;i<=n;i++) a[i]=find(a[i]);
    for(re int i=1;i<=n;i++)
        for(re int j=1;j<=n-i+1;j++)
            {val[i][i+j-1]=read(),to[i][i+j-1]=++cnt;if(val[i][i+j-1]>0) ans+=val[i][i+j-1];}
    T=cnt+tot+1;
    for(re int i=1;i<=n;i++)
        for(re int j=1;j<=n-i+1;j++)
            if(val[i][i+j-1]>0) add(S,to[i][i+j-1],val[i][i+j-1]);
                else add(to[i][i+j-1],T,-1*val[i][i+j-1]);
    for(re int i=1;i<=n;i++)
        for(re int j=1;j<=n-i+1;j++)
            if(i!=i+j-1) 
            {
                add(to[i][i+j-1],to[i+1][i+j-1],inf);
                if(j>1) add(to[i][i+j-1],to[i][i+j-2],inf);
            }
            else add(to[i][i+j-1],T,w[i]),add(to[i][i+j-1],a[i]+cnt,inf);
    for(re int i=1;i<=tot;i++) add(i+cnt,T,b[i]*b[i]*m);
    while(BFS()) 
        ans-=dfs(S,inf);
    printf("%d\n",ans);
    return 0;
}

转载于:https://www.cnblogs.com/asuldb/p/10300632.html

内容概要:本文深入解析了扣子COZE AI编程及其详细应用代码案例,旨在帮助读者理解新一代低门槛智能体开发范式。文章从五个维度展开:关键概念、核心技巧、典型应用场景、详细代码案例分析以及未来发展趋势。首先介绍了扣子COZE的核心概念,如Bot、Workflow、Plugin、Memory和Knowledge。接着分享了意图识别、函数调用链、动态Prompt、渐进式发布及监控可观测等核心技巧。然后列举了企业内部智能客服、电商导购助手、教育领域AI助教和金融行业合规质检等应用场景。最后,通过构建“会议纪要智能助手”的详细代码案例,展示了从需求描述、技术方案、Workflow节点拆解到调试与上线的全过程,并展望了多智能体协作、本地私有部署、Agent2Agent协议、边缘计算插件和实时RAG等未来发展方向。; 适合人群:对AI编程感兴趣的开发者,尤其是希望快速落地AI产品的技术人员。; 使用场景及目标:①学习如何使用扣子COZE构建生产级智能体;②掌握智能体实例、自动化流程、扩展能力和知识库的使用方法;③通过实际案例理解如何实现会议纪要智能助手的功能,包括触发器设置、下载节点、LLM节点Prompt设计、Code节点处理和邮件节点配置。; 阅读建议:本文不仅提供了理论知识,还包含了详细的代码案例,建议读者结合实际业务需求进行实践,逐步掌握扣子COZE的各项功能,并关注其未来的发展趋势。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值