[CareerCup] 18.12 Largest Sum Submatrix 和最大的子矩阵

本文介绍了一种寻找具有最大可能和的子矩阵的算法。通过建立累计和矩阵,该算法能在O(n^4)时间内找到最大子矩阵和,并进一步优化至O(n^3)。文章提供了两种解法的具体实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

18.12 Given an NxN matrix of positive and negative integers, write code to find the submatrix with the largest possible sum.

 

这道求和最大的子矩阵,跟LeetCode上的Maximum Size Subarray Sum Equals kMaximum Subarray很类似。这道题不建议使用brute force的方法,因为实在是不高效,我们需要借鉴上面LeetCode中的建立累计和矩阵的思路,我们先来看这道题的第一种解法,由于建立好累计和矩阵,那么我们通过给定了矩阵的左上和右下两个顶点的坐标可以在O(1)的时间内快速的求出矩阵和,所以我们要做的就是遍历矩阵中所有的子矩阵,然后比较其矩阵和,返回最大的即可,时间复杂度为O(n4)。

 

解法一:

vector<vector<int>> precompute(vector<vector<int>> &matrix) {
    vector<vector<int>> sumMatrix = matrix;
    for (int i = 0; i < matrix.size(); ++i) {
        for (int j = 0; j < matrix[i].size(); ++j) {
            if (i == 0 && j == 0) {
                sumMatrix[i][j] = matrix[i][j];
            } else if (j == 0) {
                sumMatrix[i][j] = sumMatrix[i - 1][j] + matrix[i][j];
            } else if (i == 0) {
                sumMatrix[i][j] = sumMatrix[i][j - 1] + matrix[i][j];
            } else {
                sumMatrix[i][j] = sumMatrix[i - 1][j] + sumMatrix[i][j - 1] - sumMatrix[i - 1][j - 1] + matrix[i][j];
            }
        }
    }
    return sumMatrix;
}

int compute_sum(vector<vector<int>> &sumMatrix, int i1, int i2, int j1, int j2) {
    if (i1 == 0 && j1 == 0) {
        return sumMatrix[i2][j2];
    } else if (i1 == 0) {
        return sumMatrix[i2][j2] - sumMatrix[i2][j1 - 1];
    } else if (j1 == 0) {
        return sumMatrix[i2][j2] - sumMatrix[i1 - 1][j2];
    } else {
        return sumMatrix[i2][j2] - sumMatrix[i2][j1 - 1] - sumMatrix[i1 - 1][j2] + sumMatrix[i1 - 1][j1 - 1];
    }
}

int get_max_matrix(vector<vector<int>> &matrix) {
    int res = INT_MIN;
    vector<vector<int>> sumMatrix = precompute(matrix);
    for (int r1 = 0; r1 < matrix.size(); ++r1) {
        for (int r2 = r1; r2 < matrix.size(); ++r2) {
            for (int c1 = 0; c1 < matrix[0].size(); ++c1) {
                for (int c2 = c1; c2 < matrix[0].size(); ++c2) {
                    int sum = compute_sum(sumMatrix, r1, r2, c1, c2);
                    res = max(res, sum); 
                }
            }
        }
    }
    return res;
}

 

其实这道题的解法还能进一步优化到O(n3),根据LeetCode中的那道Maximum Subarray的解法,我们可以对一维数组求最大子数组的时间复杂度优化到O(n),那么我们可以借鉴其的思路,由于二维数组中遍历所有的列数相等的子矩阵的时间为O(n2),每一行的遍历是O(n),所以整个下来的时间复杂度即为O(n3),参见代码如下:

 

解法二:

int max_subarray(vector<int> &array) {
    int res = 0, sum = 0;
    for (int i = 0; i < array.size(); ++i) {
        sum += array[i];
        res = max(res, sum);
        sum = max(sum, 0);
    }
    return res;
}

int max_submatrix(vector<vector<int>> &matrix) {
    if (matrix.empty() || matrix[0].empty()) return 0;
    int res = 0;
    for (int r1 = 0; r1 < matrix.size(); ++r1) {
        vector<int> sum(matrix[0].size());
        for (int r2 = r1; r2 < matrix.size(); ++r2) {
            for (int c = 0; c < matrix[0].size(); ++c) {
                sum[c] += matrix[r2][c];
            }
            int t = max_subarray(sum);
            res = max(res, t);
        }
    }
    return res;
}

 

CareerCup All in One 题目汇总

 

转载于:https://www.cnblogs.com/grandyang/p/5487815.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值