一.线性方程组求解
1.直接解法
①利用左除运算符的直接解法
对于线性方程组Ax=b,可以利用左除运算符“\”求解:
x=A\b
例 用直接解法求解下列线性方程组。
命令如下:
A=[2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1,-4];
b=[13,-9,6,0]';
x=A\b
②利用矩阵的分解求解线性方程组
矩阵分解是指根据一定的原理用某种算法将一个矩阵分解成若干个矩阵的乘积。常见的矩阵分解有LU分解、QR分解、Cholesky分解,以及Schur分解、Hessenberg分解、奇异分解等。
(1) LU分解
矩阵的LU分解就是将一个矩阵表示为一个交换下三角矩阵和一个上三角矩阵的乘积形式。线性代数中已经证明,只要方阵A是非奇异的,LU分解总是可以进行的。
MATLAB提供的lu函数用于对矩阵进行LU分解,其调用格式为:
[L,U]=lu(X):产生一个上三角阵U和一个变换形式的下三角阵L(行交换),使之满足X=LU。注意,这里的矩阵X必须是方阵。
[L,U,P]=lu(X):产生一个上三角阵U和一个下三角阵L以及一个置换矩阵P,使之满足PX=LU。当然矩阵X同样必须是方阵。
实现LU分解后,线性方程组Ax=b的解x=U\(L\b)或x=U\(L\Pb),这样可以大大提高运算速度。
例 用LU分解求解例7-1中的线性方程组。
命令如下:
A=[2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1,-4];
b=[13,-9,6,0]';
[L,U]=lu(A);
x=U\(L\b)
或采用LU分解的第2种格式,命令如下:
[L,U ,P]=lu(A);
x=U\(L\P*b)
(2) QR分解
对矩阵X进行QR分解,就是把X分解为一个正交矩阵Q和一个上三角矩阵R的乘积形式。QR分解只能对方阵进行。MATLAB的函数qr可用于对矩阵进行QR分解,其调用格式为:
[Q,R]=qr(X):产生一个一个正交矩阵Q和一个上三角矩阵R,使之满足X=QR。
[Q,R,E]=qr(X):产生一个一个正交矩阵Q、一个上三角矩阵R以及一个置换矩阵E,使之满足XE=QR。
实现QR分解后,线性方程组Ax=b的解x=R\(Q\b)或x=E(R\(Q\b))。
例 用QR分解求解例7-1中的线性方程组。
命令如下:
A=[2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1,-4];
b=[13,-9,6,0]';
[Q,R]=qr(A);
x=R\(Q\b)
或采用QR分解的第2种格式,命令如下:
[Q,R,E]=qr(A);
x=E*(R\(Q\b))
(3) Cholesky分解
如果矩阵X是对称正定的,则Cholesky分解将矩阵X分解成一个下三角矩阵和上三角矩阵的乘积。设上三角矩阵为R,则下三角矩阵为其转置,即X=R'R。MATLAB函数chol(X)用于对矩阵X进行Cholesky分解,其调用格式为:
R=chol(X):产生一个上三角阵R,使R'R=X。若X为非对称正定,则输出一个出错信息。
[R,p]=chol(X):这个命令格式将不输出出错信息。当X为对称正定的,则p=0,R与上述格式得到的结果相同;否则p为一个正整数。如果X为满秩矩阵,则R为一个阶数为q=p-1的上三角阵,且满足R'R=X(1:q,1:q)。
实现Cholesky分解后,线性方程组Ax=b变成R‘Rx=b,所以x=R\(R’\b)。
例4 用Cholesky分解求解例7-1中的线性方程组。
命令如下:
A=[2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1,-4];
b=[13,-9,6,0]';
R=chol(A)
??? Error using ==> chol
Matrix must be positive definite
命令执行时,出现错误信息,说明A为非正定矩阵。
2.迭代解法
迭代解法非常适合求解大型系数矩阵的方程组。在数值分析中,迭代解法主要包括
Jacobi迭代法、Gauss-Serdel迭代法、超松弛迭代法和两步迭代法。
①Jacobi迭代法
对于线性方程组Ax=b,如果A为非奇异方阵,即
(i=1,2,…,n),则可将A分解为A=D-L-U,其中D为对角阵,其元素为A的对角元素,L与U为A的下三角阵和上三角阵,于是Ax=b化为:
与之对应的迭代公式为:
这就是Jacobi迭代公式。如果序列 收敛于x,则x必是方程Ax=b的解。
Jacobi迭代法的MATLAB函数文件Jacobi.m如下:
function [y,n]=jacobi(A,b,x0,eps)
if nargin==3
eps=1.0e-6;
elseif nargin<3
error
return
end
D=diag(diag(A)); %求A的对角矩阵
L=-tril(A,-1); %求A的下三角阵
U=-triu(A,1); %求A的上三角阵
B=D\(L+U);
f=D\b;
y=B*x0+f;
n=1; %迭代次数
while norm(y-x0)>=eps
x0=y;
y=B*x0+f;
n=n+1;
end
例5 用Jacobi迭代法求解下列线性方程组。设迭代初值为0,迭代精度为10-6。
在命令中调用函数文件Jacobi.m,命令如下:
A=[10,-1,0;-1,10,-2;0,-2,10];
b=[9,7,6]';
[x,n]=jacobi(A,b,[0,0,0]',1.0e-6)
②Gauss-Serdel迭代法
在Jacobi迭代过程中,计算时,已经得到,不必再用,即原来的迭代公式Dx(k+1)=(L+U)x(k)+b可以改进为Dx(k+1)=Lx(k+1)+Ux(k)+b,于是得到:
x(k+1)=(D-L)-1Ux(k)+(D-L)-1b
该式即为Gauss-Serdel迭代公式。和Jacobi迭代相比,Gauss-Serdel迭代用新分量代替旧分量,精度会高些。
Gauss-Serdel迭代法的MATLAB函数文件gauseidel.m如下:
function [y,n]=gauseidel(A,b,x0,eps)
if nargin==3
eps=1.0e-6;
elseif nargin<3
error
return
end
D=diag(diag(A)); %求A的对角矩阵
L=-tril(A,-1); %求A的下三角阵
U=-triu(A,1); %求A的上三角阵
G=(D-L)\U;
f=(D-L)\b;
y=G*x0+f;
n=1; %迭代次数
while norm(y-x0)>=eps
x0=y;
y=G*x0+f;
n=n+1;
end
例6 用Gauss-Serdel迭代法求解下列线性方程组。设迭代初值为0,迭代精度为10-6。
在命令中调用函数文件gauseidel.m,命令如下:
A=[10,-1,0;-1,10,-2;0,-2,10];
b=[9,7,6]';
[x,n]=gauseidel(A,b,[0,0,0]',1.0e-6)
例7 分别用Jacobi迭代和Gauss-Serdel迭代法求解下列线性方程组,看是否收敛。
命令如下:
a=[1,2,-2;1,1,1;2,2,1];
b=[9;7;6];
[x,n]=jacobi(a,b,[0;0;0])
[x,n]=gauseidel(a,b,[0;0;0])
二.非线性方程数值求解
1 单变量非线性方程求解
在MATLAB中提供了一个fzero函数,可以用来求单变量非线性方程的根。该函数的调用格式为:
z=fzero('fname',x0,tol,trace)
其中fname是待求根的函数文件名,x0为搜索的起点。一个函数可能有多个根,但fzero函数只给出离x0最近的那个根。tol控制结果的相对精度,缺省时取tol=eps,trace指定迭代信息是否在运算中显示,为1时显示,为0时不显示,缺省时取trace=0。
例8 求 在 附近的根。
步骤如下:
(1) 建立函数文件funx.m。
function
fx=funx(x)
fx=x-10.^x+2;
(2)
调用fzero函数求根。
z=fzero('funx',0.5)
z =
0.3758
2.非线性方程组的求解
对于非线性方程组F(X)=0,用fsolve函数求其数值解。fsolve函数的调用格式为:
X=fsolve('fun',X0,option)
其中X为返回的解,fun是用于定义需求解的非线性方程组的函数文件名,X0是求根过程的初值,option为最优化工具箱的选项设定。最优化工具箱提供了20多个选项,用户可以使用optimset命令将它们显示出来。如果想改变其中某个选项,则可以调用optimset()函数来完成。例如,Display选项决定函数调用时中间结果的显示方式,其中‘off’为不显示,‘iter’表示每步都显示,‘final’只显示最终结果。optimset(‘Display’,‘off’)将设定Display选项为‘off’。
例9 求下列非线性方程组在(0.5,0.5) 附近的数值解。
(1)
建立函数文件myfun.m。
function q=myfun(p)
x=p(1);
y=p(2);
q(1)=x-0.6*sin(x)-0.3*cos(y);
q(2)=y-0.6*cos(x)+0.3*sin(y);
(2)
在给定的初值x0=0.5,y0=0.5下,调用fsolve函数求方程的根。
x=fsolve('myfun',[0.5,0.5]',optimset('Display','off'))
x =
0.6354
0.3734
将求得的解代回原方程,可以检验结果是否正确,命令如下:
q=myfun(x)
q =
1.0e-009 *
0.2375 0.2957
可见得到了较高精度的结果。
三.常微分方程初值问题的数值解法
1.龙格-库塔法简介
2.龙格-库塔法的实现
基于龙格-库塔法,MATLAB提供了求常微分方程数值解的函数,一般调用格式为:
[t,y]=ode23('fname',tspan,y0)
[t,y]=ode45('fname',tspan,y0)
其中fname是定义f(t,y)的函数文件名,该函数文件必须返回一个列向量。tspan形式为[t0,tf],表示求解区间。y0是初始状态列向量。t和y分别给出时间向量和相应的状态向量。
例10 设有初值问题,
试求其数值解,并与精确解相比较(精确解为y(t)= )。
(1) 建立函数文件funt.m。
function yp=funt(t,y)
yp=(y^2-t-2)/4/(t+1);
(2) 求解微分方程。
t0=0;tf=10;
y0=2;
[t,y]=ode23('funt',[t0,tf],y0); %求数值解
y1=sqrt(t+1)+1; %求精确解
plot(t,y,’b.’,t,y1,’r-‘) % 通过图形来比较
数值解图形用蓝色圆点表示,精确解图形用红色实线表示。如图所示。可以看出两种结果近似。相近
四.函数极值
MATLAB提供了基于单纯形算法求解函数极值的函数fmin和fmins,它们分别用于单变量函数和多变量函数的最小值,其调用格式为:
x=fmin('fname',x1,x2)
x=fmins('fname',x0)
这两个函数的调用格式相似。其中fmin函数用于求单变量函数的最小值点。fname是被最小化的目标函数名,x1和x2限定自变量的取值范围。fmins函数用于求多变量函数的最小值点,x0是求解的初始值向量。
MATLAB没有专门提供求函数最大值的函数,但只要注意到-f(x)在区间(a,b)上的最小值就是f(x)在(a,b)的最大值,所以fmin(f,x1,x2)返回函数f(x)在区间(x1,x2)上的最大值。
例13 求 在[0,5]内的最小值点。
(1)
建立函数文件mymin.m。
function fx=mymin(x)
fx=x.^3-2*x-5;
(2)
调用fmin函数求最小值点。
x=fminbnd('mymin',0,5) 177页
x=
0.8165
三.Matlab数值积分和微分
一.数值积分
1.数值积分基本原理
求解定积分的数值方法多种多样,如简单的梯形法、辛普生(Simpson)法、牛顿-柯特斯(Newton-Cotes)法等都是经常采用的方法。它们的基本思想都是将整个积分区间[a,b]分成n个子区间[
, ],i=1,2,…,n,其中 , 。这样求定积分问题就分解为求和问题。
2.数值积分的实现方法
①变步长辛普生法
基于变步长辛普生法,MATLAB给出了quad函数来求定积分。该函数的调用格式为:
[I,n]=quad('fname',a,b,tol,trace)
其中fname是被积函数名。a和b分别是定积分的下限和上限。tol用来控制积分精度,缺省时取tol=0.001。trace控制是否展现积分过程,若取非0则展现积分过程,取0则不展现,缺省时取trace=0。返回参数I即定积分值,n为被积函数的调用次数。
例 求定积分
(1)
建立被积函数文件fesin.m。
function f=fesin(x)
f=exp(-0.5*x).*sin(x+pi/6);
(2)
调用数值积分函数quad求定积分。
[S,n]=quad('fesin',0,3*pi)
S =
0.9008
n =
77
②牛顿-柯特斯法
基于牛顿-柯特斯法,MATLAB给出了quad8函数来求定积分。该函数的调用格式为:
[I,n]=quad8('fname',a,b,tol,trace)
其中参数的含义和quad函数相似,只是tol的缺省值取
。该函数可以更精确地求出定积分的值,且一般情况下函数调用的步数明显小于quad函数,从而保证能以更高的效率求出所需的定积分值。
例 求定积分
(1) 被积函数文件fx.m。
function f=fx(x)
f=x.*sin(x)./(1+cos(x).*cos(x));
(2) 调用函数quad8求定积分。
I=quad8('fx',0,pi)
I =
2.4674
例3 分别用quad函数和quad8函数求定积分的近似值,并在相同的积分精度下,比较函数的调用次数。
调用函数quad求定积分:
format long;
fx=inline('exp(-x)');
[I,n]=quad(‘fx’,1,2.5,1e-10)
I =
0.28579444254766
n =
65
调用函数quad8求定积分:
format long;
fx=inline('exp(-x)');
[I,n]=quad8(fx,1,2.5,1e-10)
I =
0.28579444254754
n =
33
③被积函数由一个表格定义
在MATLAB中,对由表格形式定义的函数关系的求定积分问题用trapz(X,Y)函数。其中向量X,Y定义函数关系Y=f(X)。
例8-4 用trapz函数计算定积分。
命令如下:
X=1:0.01:2.5;
Y=exp(-X); %生成函数关系数据向量
trapz(X,Y)
ans =
0.28579682416393
3.二重定积分的数值求解
考虑下面的二重定积分问题:
使用MATLAB提供的dblquad函数就可以直接求出上述二重定积分的数值解。该函数的调用格式为:
I=dblquad(f,a,b,c,d,tol,trace)
该函数求f(x,y)在[a,b]×[c,d]区域上的二重定积分。参数tol,trace的用法与函数quad完全相同。
例8-5 计算二重定积分
(1) 建立一个函数文件fxy.m:
function f=fxy(x,y)
global ki;
ki=ki+1; %ki用于统计被积函数的调用次数
f=exp(-x.^2/2).*sin(x.^2+y);
(2) 调用dblquad函数求解。
global ki;ki=0;
I=dblquad('fxy',-2,2,-1,1)
ki
I =
1.57449318974494 (数据格式有关)
ki =
1038
二.数值微分
1 数值差分与差商
2 数值微分的实现
在MATLAB中,没有直接提供求数值导数的函数,只有计算向前差分的函数diff,其调用格式为:
DX=diff(X):计算向量X的向前差分,DX(i)=X(i+1)-X(i),i=1,2,…,n-1。
DX=diff(X,n):计算X的n阶向前差分。例如,diff(X,2)=diff(diff(X))。
DX=diff(A,n,dim):计算矩阵A的n阶差分,dim=1时(缺省状态),按列计算差分;dim=2,按行计算差分。
例6 生成以向量V=[1,2,3,4,5,6]为基础的范得蒙矩阵,按列进行差分运算。
命令如下:
V=vander(1:6)
DV=diff(V) %计算V的一阶差分
V =
1 1 1 1 1 1
32 16 8 4 2 1
243 81 27 9 3 1
1024 256 64 16 4 1
3125 625 125 25 5 1
7776 1296 216 36 6 1
DV =
31 15 7 3 1 0
211 65 19 5 1 0
781 175 37 7 1 0
2101 369 61 9 1 0
4651 671 91 11 1 0
例7
用不同的方法求函数f(x)的数值导数,并在同一个坐标系中做出f'(x)的图像。
为了确定计算数值导数的点,假设在[-3,3]区间内0.01为步长求数值导数。下面用3种方法求f(x)在这些点的导数,首先用一个5次多项式p(x)拟合函数f(x),并对p(x)求一般意义下的导数dp(x),求出dp(x)在假设点的值;第二种方法直接求f(x)在假设点的数值导数,第三种方法求出
: ,然后直接求 在假设点的数值,最后用一个坐标图显示这三条曲线。
程序如下:
f=inline('sqrt(x.^3+2*x.^2-x+12)+(x+5).^(1/6)+5*x+2');
g=inline('(3*x.^2+4*x-1)./sqrt(x.^3+2*x.^2-x+12)/2+1/6./(x+5).^(5/6)+5');
x=-3:0.01:3;
p=polyfit(x,f(x),5); %用5次多项式p拟合f(x)
dp=polyder(p); %对拟合多项式p求导数dp
dpx=polyval(dp,x); %求dp在假设点的函数值
dx=diff(f([x,3.01]))/0.01; %直接对f(x)求数值导数
gx=g(x); %求函数f的导函数g在假设点的导数
plot(x,dpx,x,dx,'.',x,gx,'-'); %作图
程序运行后得到图形如下,结果表明,用3种方法求得的数值导数比较接近。