题目大意:
输入n,代表一位童子兵要穿过一条路,路上有些地方放着n个地雷(1<=n<=10)。再输入p,代表这位童子兵非常好玩,走路一蹦一跳的。每次他在 i 位置有 p 的概率走一步到 i+1 ,或者 (1-p) 的概率跳一步到 i+2。输入n个数,代表n个地雷的位置(1<=n<=100000000),童子兵初始在1位置,求他安全通过这条道路的概率。
基本思路:
如果k 号位有雷,那么安全通过这个雷只可能是在 k-1 号位选择走两步到 k+1 号位。因此,可以得到如下结论:在第 i 个雷的被处理掉的概率就是从 a[i-1]+1 号位到 a[i] 号位的概率。于是,可以用 1 减去就可以求出安全通过第 i个雷的概率,最后乘起来即可,比较悲剧的是数据很大,所以需要用到矩阵快速幂……
类似斐波那契数列,有ans[i]=p*ans[i-1]+(1-p)*ans[i-2] ,构造矩阵为
代码如下:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
const int inf = 0x3f3f3f3f;
const int maxn = 100000+10;
double f[3][3],base[3][3],tmp[3][3];
double b[3],c[3];
int n,pos[20];
double p;
double solve(int t){
base[0][0]=p;
base[0][1]=1.0-p;
base[1][0]=1;
base[1][1]=0;
f[0][0]=1;
f[0][1]=0;
f[1][0]=0;
f[1][1]=1;
b[0]=1;
b[1]=0;
while(t){
if(t&1){
for(int i=0;i<2;i++){
for(int j=0;j<2;j++){
tmp[i][j]=0;
for(int k=0;k<2;k++){
tmp[i][j]+=f[i][k]*base[k][j];
}
}
}
for(int i=0;i<2;i++){
for(int j=0;j<2;j++){
f[i][j]=tmp[i][j];
}
}
}
for(int i=0;i<2;i++){
for(int j=0;j<2;j++){
tmp[i][j]=0;
for(int k=0;k<2;k++){
tmp[i][j]+=base[i][k]*base[k][j];
}
}
}
for(int i=0;i<2;i++){
for(int j=0;j<2;j++){
base[i][j]=tmp[i][j];
}
}
t>>=1;
}
for(int i=0;i<2;i++){
c[i]=0;
for(int j=0;j<2;j++){
c[i]+=f[i][j]*b[j];
}
}
return c[0];
}
int main(){
while(~scanf("%d%lf",&n,&p)){
for(int i=1;i<=n;i++){
scanf("%d",&pos[i]);
}
pos[0]=0;
sort(pos,pos+n+1);
double ans=1.0;
for(int i=1;i<=n;i++){
ans=ans*(1.0-solve(pos[i]-pos[i-1]-1));
}
printf("%.7lf\n",ans);
}
return 0;
}