[LeetCode] 37. Sudoku Solver 求解数独

本文介绍了一种使用回溯法解决数独问题的算法,并提供了Java、Python和C++三种语言的实现示例。该算法确保了每个空格填入1-9之间的数字满足数独的所有规则。

 

Write a program to solve a Sudoku puzzle by filling the empty cells.

A sudoku solution must satisfy all of the following rules:

  1. Each of the digits 1-9 must occur exactly once in each row.
  2. Each of the digits 1-9 must occur exactly once in each column.
  3. Each of the the digits 1-9 must occur exactly once in each of the 9 3x3 sub-boxes of the grid.

Empty cells are indicated by the character '.'.


A sudoku puzzle...


...and its solution numbers marked in red.

Note:

    • The given board contain only digits 1-9 and the character '.'.
    • You may assume that the given Sudoku puzzle will have a single unique solution.
    • The given board size is always 9x9.

 

36. Valid Sudoku 拓展,36题让验证是否为数独数组,这道求解数独数组,跟此题类似的有 Permutations 全排列,Combinations 组合项, N-Queens N皇后问题等,其中尤其是跟 N-Queens N皇后问题的解题思路及其相似,对于每个需要填数字的格子带入1到9,每代入一个数字都判定其是否合法,如果合法就继续下一次递归,结束时把数字设回'.',判断新加入的数字是否合法时,只需要判定当前数字是否合法,不需要判定这个数组是否为数独数组,因为之前加进的数字都是合法的,可以使程序更高效。

解法:backtracking

Java:

public class Solution {
    public void solveSudoku(char[][] board) {
        if(board == null || board.length == 0)
            return;
        solve(board);
    }
    
    public boolean solve(char[][] board){
        for(int i = 0; i < board.length; i++){
            for(int j = 0; j < board[0].length; j++){
                if(board[i][j] == '.'){
                    for(char c = '1'; c <= '9'; c++){//trial. Try 1 through 9
                        if(isValid(board, i, j, c)){
                            board[i][j] = c; //Put c for this cell
                            
                            if(solve(board))
                                return true; //If it's the solution return true
                            else
                                board[i][j] = '.'; //Otherwise go back
                        }
                    }
                    
                    return false;
                }
            }
        }
        return true;
    }
    
    private boolean isValid(char[][] board, int row, int col, char c){
        for(int i = 0; i < 9; i++) {
            if(board[i][col] != '.' && board[i][col] == c) return false; //check row
            if(board[row][i] != '.' && board[row][i] == c) return false; //check column
            if(board[3 * (row / 3) + i / 3][ 3 * (col / 3) + i % 3] != '.' && 
board[3 * (row / 3) + i / 3][3 * (col / 3) + i % 3] == c) return false; //check 3*3 block
        }
        return true;
    }
}  

Python:

class Solution:
    # @param board, a 9x9 2D array
    # Solve the Sudoku by modifying the input board in-place.
    # Do not return any value.
    def solveSudoku(self, board):
        def isValid(board, x, y):
            for i in xrange(9):
                if i != x and board[i][y] == board[x][y]:
                    return False
            for j in xrange(9):
                if j != y and board[x][j] == board[x][y]:
                    return False
            i = 3 * (x / 3)
            while i < 3 * (x / 3 + 1):
                j = 3 * (y / 3)
                while j < 3 * (y / 3 + 1):
                    if (i != x or j != y) and board[i][j] == board[x][y]:
                        return False
                    j += 1
                i += 1
            return True

        def solver(board):
            for i in xrange(len(board)):
                for j in xrange(len(board[0])):
                    if(board[i][j] == '.'):
                        for k in xrange(9):
                            board[i][j] = chr(ord('1') + k)
                            if isValid(board, i, j) and solver(board):
                                return True
                            board[i][j] = '.'
                        return False
            return True  

C++:

class Solution {
public:
    void solveSudoku(vector<vector<char> > &board) {
        if (board.empty() || board.size() != 9 || board[0].size() != 9) return;
        solveSudokuDFS(board, 0, 0);
    }
    bool solveSudokuDFS(vector<vector<char> > &board, int i, int j) {
        if (i == 9) return true;
        if (j >= 9) return solveSudokuDFS(board, i + 1, 0);
        if (board[i][j] == '.') {
            for (int k = 1; k <= 9; ++k) {
                board[i][j] = (char)(k + '0');
                if (isValid(board, i , j)) {
                    if (solveSudokuDFS(board, i, j + 1)) return true;
                }
                board[i][j] = '.';
            }
        } else {
            return solveSudokuDFS(board, i, j + 1);
        }
        return false;
    }
    bool isValid(vector<vector<char> > &board, int i, int j) {
        for (int col = 0; col < 9; ++col) {
            if (col != j && board[i][j] == board[i][col]) return false;
        }
        for (int row = 0; row < 9; ++row) {
            if (row != i && board[i][j] == board[row][j]) return false;
        }
        for (int row = i / 3 * 3; row < i / 3 * 3 + 3; ++row) {
            for (int col = j / 3 * 3; col < j / 3 * 3 + 3; ++col) {
                if ((row != i || col != j) && board[i][j] == board[row][col]) return false;
            }
        }
        return true;
    }
};

  

类似题目:

[LeetCode] 36. Valid Sudoku 验证数独

 

All LeetCode Questions List 题目汇总

 

转载于:https://www.cnblogs.com/lightwindy/p/9666968.html

### 解决方案 LeetCode37 题名为 **Sudoku Solver**,这是一道关于解决数独问题的经典回溯算法题目。以下是该问题的详细解答。 #### 数独求解的核心思想 数独求解可以通过回溯法来完成。其基本原理是从左上角到右下角依次尝试填充每一个空格子,在满足条件的情况下继续向下推进;如果发现当前路径无法解决问题,则返回并调整之前的选择[^3]。 #### 实现细节 为了高效地验证某个位置是否可以填入特定数字,通常会维护三个布尔数组分别记录每一行、每一列以及每个九宫格中的数字使用情况。这样可以在常量时间内判断某数字是否合法[^4]。 下面是完整的 C++ 实现代码: ```cpp class Solution { public: void solveSudoku(vector<vector<char>>& board) { backtrack(board); } private: bool backtrack(vector<vector<char>>& board) { for (int i = 0; i < 9; ++i) { // 枚举行 for (int j = 0; j < 9; ++j) { // 枚举列 if (board[i][j] != '.') continue; for (char k = '1'; k <= '9'; ++k) { // 尝试填入字符 '1' 到 '9' if (isValid(i, j, k, board)) { board[i][j] = k; // 做选择 if (backtrack(board)) return true; // 如果找到一种可行解则立即返回 board[i][j] = '.'; // 撤销选择 } } return false; // 当前格子无有效数字可选,触发回溯 } } return true; // 所有格子都已填写完毕 } bool isValid(int row, int col, char val, vector<vector<char>> const& board) { for (int i = 0; i < 9; ++i) { if (board[row][i] == val || // 同一行是否有重复 board[i][col] == val || // 同一列是否有重复 board[(row / 3) * 3 + i / 3][(col / 3) * 3 + i % 3] == val) { // 同一个九宫格是否有重复 return false; } } return true; } }; ``` 上述代码通过 `backtrack` 函数实现了核心逻辑,并利用辅助函数 `isValid` 来快速校验当前位置是否能放置指定数值[^5]。 --- #### 性能分析 由于最坏情况下可能需要遍历整个棋盘的所有可能性组合,因此时间复杂度接近 O(9^(n*n)),其中 n=9 表示标准数独大小。然而实际运行过程中剪枝操作能够显著减少不必要的计算开销[^6]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值