ZOJ 3321 Circle【并查集】

本文介绍了一个简单的算法,用于判断无向图是否仅由一个环组成。通过输入节点数量及连接情况,利用并查集确定图中各节点是否属于同一连通块且每个节点的度数均为2。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

解题思路:给定n个点,m条边,判断是否构成一个环

注意到构成一个环,所有点的度数为2,即一个点只有两条边与之相连,再有就是判断合并之后这n个点是否在同一个连通块

Circle

Time Limit: 1 Second      Memory Limit: 32768 KB

Your task is so easy. I will give you an undirected graph, and you just need to tell me whether the graph is just a circle. A cycle is three or more nodes V1, V2, V3, ... Vk, such that there are edges between V1 and V2, V2 and V3, ... Vk and V1, with no other extra edges. The graph will not contain self-loop. Furthermore, there is at most one edge between two nodes.

Input

There are multiple cases (no more than 10).

The first line contains two integers n and m, which indicate the number of nodes and the number of edges (1 < n < 10, 1 <= m < 20).

Following are m lines, each contains two integers x and y (1 <= x, y <= n, x != y), which means there is an edge between node x and node y.

There is a blank line between cases.

Output

If the graph is just a circle, output "YES", otherwise output "NO".

Sample Input

3 3
1 2
2 3
1 3

4 4
1 2
2 3
3 1
1 4

Sample Output

YES
NO
#include<iostream>  
#include<cstdio>  
#include<cstring>  
#include<algorithm>  
using namespace std;
int degree[10010],pre[10010];

int find(int root){ return root == pre[root] ? root : pre[root] = find(pre[root]); }
void unionroot(int x,int y)
{
	int root1=find(x);
	int root2=find(y);
	if(root1!=root2)
	pre[root1]=root2;
}

int main()
{
	int m,n,u,v,i,j;
	while(scanf("%d %d",&n,&m)!=EOF)
	{
		int flag=1;
		memset(degree,0,sizeof(degree));
		for(i=1;i<=10010;i++)
		pre[i]=i;
		for(i=1;i<=m;i++)
		{
			scanf("%d %d",&u,&v);
			degree[u]++;
			degree[v]++;
			unionroot(u,v);	
		}
		
		for(i=1;i<=n;i++)
		{
			if(degree[i]!=2)
			{
				flag=0;
				break;
			}
			if(find(i)!=find(n))
			{
				flag=0;
				break;
			}
		}
		if(flag)
		printf("YES\n");
		else
		printf("NO\n");		
	}
}

  

 

转载于:https://www.cnblogs.com/wuyuewoniu/p/4254667.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值