Codeforces Round #399 (Div. 1 + Div. 2, combined) (博弈,Nim游戏)E.Game of Stones

本文介绍了一个基于Nim游戏的博弈论问题,通过设定特定的游戏规则,探讨了如何确定玩家是否能在双方都采取最优策略的情况下赢得游戏。文章提供了一种解决方法,并附带了相关的代码实现。

Sam has been teaching Jon the Game of Stones to sharpen his mind and help him devise a strategy to fight the white walkers. The rules of this game are quite simple:

  • The game starts with n piles of stones indexed from 1 to n. The i-th pile contains si stones.
  • The players make their moves alternatively. A move is considered as removal of some number of stones from a pile. Removal of 0 stones does not count as a move.
  • The player who is unable to make a move loses.

Now Jon believes that he is ready for battle, but Sam does not think so. To prove his argument, Sam suggested that they play a modified version of the game.

In this modified version, no move can be made more than once on a pile. For example, if 4 stones are removed from a pile, 4 stones cannot be removed from that pile again.

Sam sets up the game and makes the first move. Jon believes that Sam is just trying to prevent him from going to battle. Jon wants to know if he can win if both play optimally.

Input

First line consists of a single integer n (1 ≤ n ≤ 106) — the number of piles.

Each of next n lines contains an integer si (1 ≤ si ≤ 60) — the number of stones in i-th pile.

Output

Print a single line containing "YES" (without quotes) if Jon wins, otherwise print "NO" (without quotes)

Example

Input
1
5
Output
NO
Input
2
1
2
Output
YES

Note

In the first case, Sam removes all the stones and Jon loses.

In second case, the following moves are possible by Sam: 

In each of these cases, last move can be made by Jon to win the game as follows: 

 

第一次见到Nim游戏的博弈题目。状态数为 n(n+1)/2 <=x 的最大x,之后就进行异或和即可。

参考词条:   Nim游戏  SG函数 Sprague–Grundy theorem

 1 #include <iostream>
 2 //#include<bits/stdc++.h>
 3 #include <stack>
 4 #include <queue>
 5 #include <map>
 6 #include <set>
 7 #include <cstdio>
 8 #include <cstring>
 9 #include <algorithm>
10 using namespace std;
11 typedef long long ll;
12 typedef unsigned long long ull;
13 const int MAX=1e5+5;
14 int n;
15 int a[66];
16 int main()
17 {
18     int i,j,st=0,an=0;
19     a[0]=0;
20     for(i=1;i<=10;i++)
21     {
22         for(j=1;j<=i+1;j++)
23         {
24             a[++st]=i;
25         }
26     }
27     scanf("%d",&n);
28     while(n--)
29     {
30         scanf("%d",&st);
31         an^=a[st];
32     }
33     if(an==0)
34         printf("YES\n");
35     else
36         printf("NO\n");
37 }

 

转载于:https://www.cnblogs.com/quintessence/p/6423700.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值