[Functional Programming] From simple implementation to Currying to Partial Application

Let's say we want to write a most simple implementation 'avg' function:

const avg = list => {
    let sum = 0;
    for(let i = 0; i < list.length; i++) {
        sum += list[i]
    }
    return sum / list.length
}

Basiclly, the 'avg' function doing two things:

  • Calculate sum
  • Divide sum / length

It works fine for tiny / small application, but for the large application, we need to think about reuseablitiy. We want to breakdown one function and think about any reuseable partten, which later can be reused.

 

In the following examples, We want to bring in two libarays which are commonly used in FP. One is Ramda, another one is Crocks.

 

Currying:

First, we want to write 'sum' and 'devide' functions by ourselves:

const { curry, reduce, compose } = require("crocks");
const R = require("ramda");

const sum = reduce(R.add, 0);
// divideByLen :: [Number] -> Number -> Number
const divideByLen = curry(
  compose(
    R.flip(R.divide),
    R.length
  )
);

'sum' is simple, using 'reduce' from Crocks, you can also write JS reduce, doesn't matter.

What we need to explain is 'divideByLen' function. 

  • Why 'curry'?

Basic we want to call divideByLen in two ways:

divideByLen([1,2,3], sum([1,2,3]))
divideByLen([1,2,3])(sum([1,2,3]))

[Notice] You need to bring in 'curry' from Crocks, it is more flexable. 

  • Why 'flip'?

Because R.divide(sum, length), we need to feed the divide function with sum as first argement, then length as second arguement. But when we write code, length will be feeded frist, sum will be partially applied, it will come second, therefore we need to call 'flip'.

 

Bring all together:

const avg = list =>
  compose(
    divideByLen(list),
    sum
  )(list);

We notice that, we have to pass 'list' to both Sum(list) and divideByLen(list). The code looks not so good. Whenever you are facing the situation, you need to pass the same arguement to two functions in parallel. You can consider to using 'Partial Application'.

 

Partial Application:

// Ramda

const avg = R.converge(R.divide, [R.sum, R.length]);

We are using 'Ramda's converge' function, bascilly you have pass in a data, the data will be passed to R.sum(data) & R.length(data), the return results of those two functions, will be passed to R.divide(resOfSum, resOfLength). 

 

//Crocks:

const { curry, fanout, merge, compose } = require("crocks");

const avg = compose(
  merge(R.divide),
  fanout(R.sum, R.length)
);

We are using the Pair ADT, the data will be passed to R.sum(data) & R.length(data) thought 'fanout' function, it returns Pair(resOfSum, resOfLength).

Then we use 'merge', it works with Pair ADT, we merge two results by R.divide(resOfSum, resOfLength).

 

转载于:https://www.cnblogs.com/Answer1215/p/10753304.html

资源下载链接为: https://pan.quark.cn/s/22ca96b7bd39 在当今的软件开发领域,自动化构建与发布是提升开发效率和项目质量的关键环节。Jenkins Pipeline作为一种强大的自动化工具,能够有效助力Java项目的快速构建、测试及部署。本文将详细介绍如何利用Jenkins Pipeline实现Java项目的自动化构建与发布。 Jenkins Pipeline简介 Jenkins Pipeline是运行在Jenkins上的一套工作流框架,它将原本分散在单个或多个节点上独立运行的任务串联起来,实现复杂流程的编排与可视化。它是Jenkins 2.X的核心特性之一,推动了Jenkins从持续集成(CI)向持续交付(CD)及DevOps的转变。 创建Pipeline项目 要使用Jenkins Pipeline自动化构建发布Java项目,首先需要创建Pipeline项目。具体步骤如下: 登录Jenkins,点击“新建项”,选择“Pipeline”。 输入项目名称和描述,点击“确定”。 在Pipeline脚本中定义项目字典、发版脚本和预发布脚本。 编写Pipeline脚本 Pipeline脚本是Jenkins Pipeline的核心,用于定义自动化构建和发布的流程。以下是一个简单的Pipeline脚本示例: 在上述脚本中,定义了四个阶段:Checkout、Build、Push package和Deploy/Rollback。每个阶段都可以根据实际需求进行配置和调整。 通过Jenkins Pipeline自动化构建发布Java项目,可以显著提升开发效率和项目质量。借助Pipeline,我们能够轻松实现自动化构建、测试和部署,从而提高项目的整体质量和可靠性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值