PAT 1123 Is It a Complete AVL Tree

本文介绍了一种自平衡二叉搜索树——AVL树,并详细解释了AVL树的旋转规则及其如何通过旋转保持平衡特性。通过给出具体的代码示例,演示了如何实现AVL树的插入操作及后续的层序遍历过程,最后判断该树是否为完全二叉树。

An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. Figures 1-4 illustrate the rotation rules.

F1.jpgF2.jpg
F3.jpgF4.jpg

Now given a sequence of insertions, you are supposed to output the level-order traversal sequence of the resulting AVL tree, and to tell if it is a complete binary tree.

Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (≤ 20). Then N distinct integer keys are given in the next line. All the numbers in a line are separated by a space.

Output Specification:
For each test case, insert the keys one by one into an initially empty AVL tree. Then first print in a line the level-order traversal sequence of the resulting AVL tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line. Then in the next line, print YES if the tree is complete, or NO if not.

Sample Input 1:
5
88 70 61 63 65

Sample Output 1:
70 63 88 61 65
YES

Sample Input 2:
8
88 70 61 96 120 90 65 68

Sample Output 2:
88 65 96 61 70 90 120 68
NO

#include<iostream>
#include<math.h>
#include<queue>
using namespace std;
struct node{
    int value, depth;
    node* l=NULL;
    node* r=NULL;
    node(int v): value(v), depth(0), l(NULL), r(NULL){
    }
};
int getheight(node* root){
    return root==NULL?0:max(getheight(root->l), getheight(root->r))+1;
}

node* RotationLL(node* root){
    node* temp=root->l;
    root->l=temp->r;
    temp->r=root;
    temp->depth=getheight(temp);
    root->depth=getheight(root);
    return temp;
} 

node* RotationRR(node* root){
    node* temp=root->r;
    root->r=temp->l;
    temp->l=root;
    temp->depth=getheight(temp);
    root->depth=getheight(root);
    return temp;
}

node* RotationLR(node* root){
    root->l=RotationRR(root->l); 
    return RotationLL(root);
}

node* RotationRL(node* root){
    root->r=RotationLL(root->r);
    return RotationRR(root);
}

node* insert(node* root, int val){
    if(root==NULL){
        root=new node(val);
        return root;
    }else if(val<root->value){
        root->l=insert(root->l, val);
        if(getheight(root->l)-getheight(root->r)==2)
            if(val<root->l->value)
                root=RotationLL(root);
            else
                root=RotationLR(root);
            
    }else{
        root->r=insert(root->r, val);
        if(getheight(root->l)-getheight(root->r)==-2)
            if(val<root->r->value)
                root=RotationRL(root);
            else
                root=RotationRR(root);
    }
    root->depth=getheight(root);
    return root;
}
int main(){
    int n, flag=0, ans=0, first=0;
    cin>>n;
    node* root=NULL;
    for(int i=0; i<n; i++){
        int val;
        cin>>val;
        root=insert(root, val);
    }
    queue<node*> q;
    q.push(root);
    while(!q.empty()){
        node* temp=q.front();
        first++==0?cout<<temp->value:cout<<" "<<temp->value;
        q.pop();
        if(temp->l!=NULL){
            q.push(temp->l);
            flag==1?ans=1:ans=ans;
        }
        else
            flag=1;
        if(temp->r!=NULL){
            q.push(temp->r);
            flag==1?ans=1:ans=ans;
        }   
        else
            flag=1;
    }
    cout<<endl;
    ans==1?cout<<"NO"<<endl:cout<<"YES"<<endl;
    return 0;
}

转载于:https://www.cnblogs.com/A-Little-Nut/p/9506455.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值