[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]PrI.6.1

本文介绍了一种在给定非正交基的情况下计算其双正交基的方法,并给出了利用Gram矩阵表达式的具体步骤。

Given a basis $U=(u_1,\cdots,u_n)$ not necessarily orthonormal, in $\scrH$, how would you compute the biorthogonal basis $\sex{v_1,\cdots,v_n}$? Find a formula that expresses $\sef{v_j,x}$ for each $x\in\scrH$ and $j=1,\cdots,k$ in terms of Gram matrices.

Soluton. Let $V=(v_1,\cdots,v_k)$, then $$\bex V^*U=I_n\lra U^*V=I_n. \eex$$ We may just set $v_i$ to be the solution of the linear system $U^*x=e_i$, where $e_i=(\underbrace{0,\cdots,1}_{i},\cdots, 0)^T$. Suppose now $$\bex x=\sum_{j=1}^n x_jv_j\in \scrH, \eex$$ then $$\bex \sef{v_i,x}=\sum_{j=1}^n \sef{v_i,v_j}x_j,\quad i=1,\cdots,n. \eex$$ And hence $$\bex \sex{\ba{cc} \sef{v_1,x}\\ \vdots\\ \sef{v_n,x} \ea}=\sex{\sef{v_i,v_j}}\sex{\ba{cc} x_1\\\vdots\\ x_n \ea}. \eex$$

转载于:https://www.cnblogs.com/zhangzujin/p/4115287.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值