bzoj2161 布娃娃

本文介绍了一个使用主席树解决复杂数据结构问题的方法。通过生成特定参数的布娃娃集合,每个布娃娃拥有不同的属性,如耐心值和魅力值等。目标是计算每个布娃娃的谜团答案并求和,最终输出余数。文章详细解释了解决方案的思路和技术实现细节。

Description
小时候的雨荨非常听话,是父母眼中的好孩子。在学校是老师的左右手,同学的好榜样。后来她成为艾利斯顿第二代考神,这和小时候培养的良好素质是分不开的。雨荨的妈妈也为有这么一个懂事的女儿感到高兴。一次期末考试,雨荨不知道第多少次,再次考了全年级第一名。雨荨的妈妈看到女儿100分的成绩单时,脸上又泛起了幸福的笑容,作为奖励,她给雨荨买了n个布娃娃。细心的雨荨发现,第i个布娃娃有一个耐心值P[i]以及一个魅力值C[i],并且还有能够忍受的耐心值的上限R[i]以及下限L[i]。当一个布娃娃j满足L[j]<=P[i]并且P[i]<=R[j],那么布娃娃j喜欢布娃娃i。雨荨还发现,一个布娃娃有可能喜欢它自己。每个布娃娃心中都有一个谜团,具体来说就是:第i个布娃娃想知道喜欢它的布娃娃中,魅力值第i大的布娃娃的魅力值是多少,并且称这个布娃娃的谜团答案为这个魅力值的大小,如果不存在,那么这个布娃娃的谜团答案为0。鉴于雨荨的上司栋栋不让题目的数据过大,下面给出数据的生成方法:给出16个参数:
Padd, Pfirst, Pmod, Pprod, Cadd, Cfirst, Cmod, Cprod, Ladd, Lfirst, Lmod, Lprod, Radd, Rfirst, Rmod, Rprod。

P[1] = Pfirst % Pmod, P[i] = (P[i-1] Pprod + Padd + i) % Pmod (i > 1)。

对于C、L、R数组也有类似的得到方式, %代表取余运算。注意:L和R数组生成完之后,如果某个布娃娃的忍耐度上限小于下限,那么交换它的上限和下限。当然,雨荨也不会让你告诉她每个布娃娃的谜团答案,因为那样会使输出数据很大。所以雨荨希望你告诉她,所有布娃娃谜团答案的和除以19921228的余数是多少。

Input
输入的第一行有一个整数n,代表布娃娃的个数。
输入的第二行有16个用空格隔开的整数
分别代表Padd,Pfirst,Pmod,Pprod,Cadd,Cfirst,Cmod,Cprod,Ladd,Lfirst,Lmod,Lprod,Radd,Rfirst,Rmod,Rprod。
16个参数均为1到100,000,000中的整数。

Output
输出一个整数,代表所有布娃娃谜团答案的和除以19921228的余数。

Sample Input
3
2 3 4 3 1 4 5 2 3 6 9 1 1 2 3 4

Sample Output
4

题面补充:n<=10^5

分析:
一眼主席树
但是需要注意的是“喜欢ta”的布娃娃,不是“ta喜欢”的布娃娃

简化了一下题意
给出一堆点,和一堆线段
求覆盖某一点的所有线段中权值第k大的线段

我们把每条线段分成加入和删除两个操作
按照x排序
建立权值线段树,记录C(魅力值)
每个线段树节点中,我们维护几个信息
l,r 左右端点
ml,mr 实际的C值
s在这个节点所管辖的区间内有几个数

P按照从小到大排序
从左向右扫
如果当前的线段端点 < 当前查找的P
则加入权值线段树

在查找的时候,如果当前节点的s根本达不到k,直接return 0
如果>=k我们就分成左右两个节点
如果右节点的s <= k,直接进右儿子
否则 k-=右儿子的s,进入左儿子
(有点像主席树)

我们在这里学到了一个新知识,

建立权值线段树查找第k大的时候
需要记录一下区间内的元素个数,
进行类似主席树的查找

tip

注意:L和R数组生成完之后,
如果某个布娃娃的忍耐度上限小于下限,那么交换它的上限和下限
然而第一次写的时候,我是一边写一边换的,jj

将P排序时,要保存一下原先的排名
因为原先的排名就是查找是需要用的k

我又犯了个zz的错误,
第i个布娃娃想知道喜欢它的布娃娃中,魅力值第i大的布娃娃的魅力值是多少
要找的是第k**大**

爆炸oj日常爆炸

这里写代码片
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>

using namespace std;

const int mod=19921228;
const int N=100010;
struct node{
    int x,y,ff;
};
node li[N*3];
int Padd,Pfirst,Pmod,Pprod,Cadd,Cfirst,Cmod,Cprod,Ladd,Lfirst,Lmod,Lprod,Radd,Rfirst,Rmod,Rprod;
int L[N],R[N],C[N],n,tot=0;
struct nd{
    int l,r,ml,mr,s;
};
nd t[N<<3];
struct po{
    int x,id;
};
po P[N];

int cmp(const node &a,const node &b)
{
    if (a.x!=b.x) return a.x<b.x;
    else return a.ff<b.ff;  //先删后加 
}

int cmp2(const po &a,const po &b)
{
    return a.x<b.x;
}

void update(int bh)
{
    t[bh].s=t[bh<<1].s+t[bh<<1|1].s;
}

void build(int bh,int l,int r)   //权值线段树(魅力值C) 
{
    t[bh].l=l; t[bh].r=r;
    t[bh].ml=C[l]; t[bh].mr=C[r];
    if (l==r) return;
    int mid=(l+r)>>1;
    build(bh<<1,l,mid);
    build(bh<<1|1,mid+1,r);
}

void add(int bh,int mb,int val)
{
    if (t[bh].l==t[bh].r) 
    {
        t[bh].s+=val;
        return;
    }
    int mid=(t[bh].l+t[bh].r)>>1;
    if (mb<=mid) add(bh<<1,mb,val);
    else add(bh<<1|1,mb,val);
    update(bh);
}

int ask(int bh,int k)
{
    if (t[bh].s<k) return 0;
    if (t[bh].l==t[bh].r) return t[bh].ml;
    if (t[bh<<1|1].s>=k) return ask(bh<<1|1,k);
    else return ask(bh<<1,k-t[bh<<1|1].s);
}

int main()
{
    scanf("%d",&n);
    scanf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d",&Padd,&Pfirst,&Pmod,&Pprod,&Cadd,&Cfirst,&Cmod,&Cprod,&Ladd,&Lfirst,&Lmod,&Lprod,&Radd,&Rfirst,&Rmod,&Rprod);
    P[1].x=Pfirst%Pmod; C[1]=Cfirst%Cmod; P[1].id=1;
    L[1]=Lfirst%Lmod; R[1]=Rfirst%Rmod;
    for (int i=2;i<=n;i++)
    {
        P[i].x=(P[i-1].x*Pprod+Padd+i)%Pmod; C[i]=(C[i-1]*Cprod+Cadd+i)%Cmod; P[i].id=i;
        L[i]=(L[i-1]*Lprod+Ladd+i)%Lmod; R[i]=(R[i-1]*Rprod+Radd+i)%Rmod;
    }

    for (int i=1;i<=n;i++)
    {
        if (L[i]>R[i]) swap(L[i],R[i]);
        tot++; li[tot].x=L[i]; li[tot].y=C[i]; li[tot].ff=1; 
        tot++; li[tot].x=R[i]+1; li[tot].y=C[i]; li[tot].ff=-1; 
    }

    sort(li+1,li+1+tot,cmp);
    sort(C+1,C+1+n);
    sort(P+1,P+1+n,cmp2);
    build(1,1,n);
    int j=1;
    int ans=0;
    for (int i=1;i<=n;i++)
    {
        while (li[j].x<=P[i].x)
            add(1,li[j].y,li[j].ff),j++;
        ans+=ask(1,P[i].id);
        ans%=mod;
    }
    printf("%d",ans);
    return 0;
}

转载于:https://www.cnblogs.com/wutongtong3117/p/7673316.html

标题SpringBoot智能在线预约挂号系统研究AI更换标题第1章引言介绍智能在线预约挂号系统的研究背景、意义、国内外研究现状及论文创新点。1.1研究背景与意义阐述智能在线预约挂号系统对提升医疗服务效率的重要性。1.2国内外研究现状分析国内外智能在线预约挂号系统的研究与应用情况。1.3研究方法及创新点概述本文采用的技术路线、研究方法及主要创新点。第2章相关理论总结智能在线预约挂号系统相关理论,包括系统架构、开发技术等。2.1系统架构设计理论介绍系统架构设计的基本原则和常用方法。2.2SpringBoot开发框架理论阐述SpringBoot框架的特点、优势及其在系统开发中的应用。2.3数据库设计与管理理论介绍数据库设计原则、数据模型及数据库管理系统。2.4网络安全与数据保护理论讨论网络安全威胁、数据保护技术及其在系统中的应用。第3章SpringBoot智能在线预约挂号系统设计详细介绍系统的设计方案,包括功能模块划分、数据库设计等。3.1系统功能模块设计划分系统功能模块,如用户管理、挂号管理、医生排班等。3.2数据库设计与实现设计数据库表结构,确定字段类型、主键及外键关系。3.3用户界面设计设计用户友好的界面,提升用户体验。3.4系统安全设计阐述系统安全策略,包括用户认证、数据加密等。第4章系统实现与测试介绍系统的实现过程,包括编码、测试及优化等。4.1系统编码实现采用SpringBoot框架进行系统编码实现。4.2系统测试方法介绍系统测试的方法、步骤及测试用例设计。4.3系统性能测试与分析对系统进行性能测试,分析测试结果并提出优化建议。4.4系统优化与改进根据测试结果对系统进行优化和改进,提升系统性能。第5章研究结果呈现系统实现后的效果,包括功能实现、性能提升等。5.1系统功能实现效果展示系统各功能模块的实现效果,如挂号成功界面等。5.2系统性能提升效果对比优化前后的系统性能
在金融行业中,对信用风险的判断是核心环节之一,其结果对机构的信贷政策和风险控制策略有直接影响。本文将围绕如何借助机器学习方法,尤其是Sklearn工具包,建立用于判断信用状况的预测系统。文中将涵盖逻辑回归、支持向量机等常见方法,并通过实际操作流程进行说明。 一、机器学习基本概念 机器学习属于人工智能的子领域,其基本理念是通过数据自动学习规律,而非依赖人工设定规则。在信贷分析中,该技术可用于挖掘历史数据中的潜在规律,进而对未来的信用表现进行预测。 二、Sklearn工具包概述 Sklearn(Scikit-learn)是Python语言中广泛使用的机器学习模块,提供多种数据处理和建模功能。它简化了数据清洗、特征提取、模型构建、验证与优化等流程,是数据科学项目中的常用工具。 三、逻辑回归模型 逻辑回归是一种常用于分类任务的线性模型,特别适用于二类问题。在信用评估中,该模型可用于判断借款人是否可能违约。其通过逻辑函数将输出映射为0到1之间的概率值,从而表示违约的可能性。 四、支持向量机模型 支持向量机是一种用于监督学习的算法,适用于数据维度高、样本量小的情况。在信用分析中,该方法能够通过寻找最佳分割面,区分违约与非违约客户。通过选用不同核函数,可应对复杂的非线性关系,提升预测精度。 五、数据预处理步骤 在建模前,需对原始数据进行清理与转换,包括处理缺失值、识别异常点、标准化数值、筛选有效特征等。对于信用评分,常见的输入变量包括收入水平、负债比例、信用历史记录、职业稳定性等。预处理有助于减少噪声干扰,增强模型的适应性。 六、模型构建与验证 借助Sklearn,可以将数据集划分为训练集和测试集,并通过交叉验证调整参数以提升模型性能。常用评估指标包括准确率、召回率、F1值以及AUC-ROC曲线。在处理不平衡数据时,更应关注模型的召回率与特异性。 七、集成学习方法 为提升模型预测能力,可采用集成策略,如结合多个模型的预测结果。这有助于降低单一模型的偏差与方差,增强整体预测的稳定性与准确性。 综上,基于机器学习的信用评估系统可通过Sklearn中的多种算法,结合合理的数据处理与模型优化,实现对借款人信用状况的精准判断。在实际应用中,需持续调整模型以适应市场变化,保障预测结果的长期有效性。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值