Max Sum
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 181284 Accepted Submission(s): 42384
Problem Description
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and
1000).
Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end
position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
Sample Input
2
5 6 -1 5 4 -7
7 0 6 -1 1 -6 7 -5
Sample Output
Case 1:
14 1 4
Case 2:
7 1 6
/*找出一个数组中和最大的一串数字,求和并输出起点和终点,简单的dp,一个数字一个数字开始加
找到小于0的话就重新开始找,否则就继续加,开始时想用01背包做,但是发现全部的数字加起来可能是
负数,这样的话01背包就没办法列出所有的情况,并且起点和终点也不好记录*/
#include<stdio.h>
#include<string.h>
int a[100010];
int main()
{
int max,b,e,t,n,sum;
int Case=1;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
memset(a,0,sizeof(a));
for(int i=1;i<=n;i++)
scanf("%d",&a[i]);
int k=1;
int max=0,flog=0;
sum=b=e=0;
for(int j=1;j<=n;j++)
{
if(a[j]>0)
flog=1;//如果数组中没有一个数大于0,那么就找出最大的负数
sum+=a[j];
if(sum<0)
{
sum=0;
k=j+1;//如果sum<0,就让sum=0重新开始加
}
if(sum>max)
{
max=sum;//找到比max大的和就开始替换
b=k;
e=j;
}
}
if(flog==0)
{
max=a[1];
b=1,e=1;
for(int j=2;j<=n;j++)
if(max<a[j])
{
max=a[j];
b=j;e=j;
}
}
printf("Case %d:\n",Case++);
printf("%d %d %d\n",max,b,e);
if(t>=1)
printf("\n");
}
return 0;
}