ACM数论之旅3---最大公约数gcd和最小公倍数lcm

本文介绍了一个用于计算两个整数最大公约数(GCD)和最小公倍数(LCM)的算法,并提供了具体的计算公式及C语言实现代码。文中还通过实例解释了如何使用这些公式进行计算。

gcd(a, b),就是求a和b的最大公约数

lcm(a, b),就是求a和b的最小公倍数

然后有个公式

a*b = gcd * lcm     ( gcd就是gcd(a, b), ( •̀∀•́ ) 简写你懂吗)

lcm(S/a, S/b) = S/gcd(a, b)

S = 9,a = 4,b = 6,小数不会lcm,只好保留分数形式去通分约分。

LL gcd(LL a, LL b){
    LL t;
    while(b){
        t = b;
        b = a % b;
        a = t;
    }
    return a;
}

 

转载于:https://www.cnblogs.com/xuyanqd/p/8759010.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值