Choose the best route

针对起点众多的最短路径问题,通过引入虚拟节点并运用Dijkstra算法实现高效求解。适用于城市交通路线规划等场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem Description
One day , Kiki wants to visit one of her friends. As she is liable to carsickness , she wants to arrive at her friend’s home as soon as possible . Now give you a map of the city’s traffic route, and the stations which are near Kiki’s home so that she can take. You may suppose Kiki can change the bus at any station. Please find out the least time Kiki needs to spend. To make it easy, if the city have n bus stations ,the stations will been expressed as an integer 1,2,3…n.
 

 

Input
There are several test cases.
Each case begins with three integers n, m and s,(n<1000,m<20000,1=<s<=n) n stands for the number of bus stations in this city and m stands for the number of directed ways between bus stations .(Maybe there are several ways between two bus stations .) s stands for the bus station that near Kiki’s friend’s home.
Then follow m lines ,each line contains three integers p , q , t (0<t<=1000). means from station p to station q there is a way and it will costs t minutes .
Then a line with an integer w(0<w<n), means the number of stations Kiki can take at the beginning. Then follows w integers stands for these stations.
 

 

Output
The output contains one line for each data set : the least time Kiki needs to spend ,if it’s impossible to find such a route ,just output “-1”.
 

 

Sample Input
5 8 5 1 2 2 1 5 3 1 3 4 2 4 7 2 5 6 2 3 5 3 5 1 4 5 1 2 2 3 4 3 4 1 2 3 1 3 4 2 3 2 1 1
题意:给定n个点,m条路,一个目标位置,其实位置有多个,求一路最短路
题解:因为起点过多,如果对每一个起点进行djkstra算法会超时。采用增加一个虚拟结点的办法一遍djkstra即可
#include<stdio.h>
#include<iostream>
#include<string.h>
using namespace std;
const int inf=10000000;
int n,m,s;
int p[1001][1001];
int visit[1001];
int des[1001];
int dijkstra()
{
 int i,j,temp,k;
 memset(visit,0,sizeof(visit));
 for(i=0;i<=n;i++) des[i]=p[0][i];
 des[0]=0;
 visit[0]=1;
 for(i=0;i<=n;i++)
 {
  temp=inf;
  for(j=0;j<=n;j++)
  {
   if(visit[j]==0&&des[j]<temp)
   {
    temp=des[j];
    k=j;
   }
  }
  visit[k]=1;
  if(temp==inf) break;
  for(j=0;j<=n;j++)
  {
   if(visit[j]==0&&des[k]+p[k][j]<des[j]) des[j]=des[k]+p[k][j];
  }
 }
 return des[s];
}
int main()
{
 int a,b,c,mm,x,r,jk,i,j;
    while(scanf("%d %d %d",&n,&m,&s)!=EOF)
 {
  jk=10000000;
  for(i=0;i<=n;i++)
  {
   for(j=0;j<=n;j++)
   {
    p[i][j]=inf;
   }
  }
        for(i=1;i<=m;i++)
  {
   scanf("%d %d %d",&a,&b,&c);
   if(p[a][b]>c)
   {
    p[a][b]=c;
   }
  }
  scanf("%d",&mm);
  for(i=0;i<mm;i++)
  {
   scanf("%d",&x);
            p[0][x]=0;
  }
  jk=dijkstra();
  if(jk==10000000) puts("-1");
  else printf("%d\n",jk);
 }
 return 0;
}

转载于:https://www.cnblogs.com/ffhuguang/p/3288238.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值