POJ 1840 Eqs 暴力

本文介绍了一种解决特定形式五次方程的方法,通过预处理和查询技术减少计算复杂度,实现高效求解。

 

 

Description

Consider equations having the following form:
a1x13+ a2x23+ a3x33+ a4x43+ a5x53=0
The coefficients are given integers from the interval [-50,50].
It is consider a solution a system (x1, x2, x3, x4, x5) that verifies the equation, xi∈[-50,50], xi != 0, any i∈{1,2,3,4,5}.

Determine how many solutions satisfy the given equation.

Input

The only line of input contains the 5 coefficients a1, a2, a3, a4, a5, separated by blanks.

Output

The output will contain on the first line the number of the solutions for the given equation.

Sample Input

37 29 41 43 47

Sample Output

654

Source

Romania OI 2002

题目大意:给a1, a2, a3, a4, a5,5个数且 xi∈[-50,50],xi != 0, any i∈{1,2,3,4,5}.求出有多少种解使得a1x13+ a2x23+ a3x33+ a4x43+ a5x53=0 

题解:5个for肯定会超时(1e8),可以分开考虑,移项可以得到-a1x13- a2x23= a3x33+ a4x43+ a5x53,把左边所有的可能存在数组里,右边查询即可,左边可能为负数,所以两边同时加上25001000

#include <stdio.h>
char mp[70000000];
int main()
{
    int t,i, j, k,a2, a1, a3,a4,a5;
    scanf("%d%d%d%d%d", &a1, &a2, &a3, &a4, &a5);
        for(j=-50;j<=50;j++)
            for(k=-50;k<=50;k++)
                if(j!=0&&k!=0)
                    mp[a1*j*j*j+a2*k*k*k+25001000]++;
    for(t=0,i=-50;i<=50;i++)
        for(j=-50;j<=50;j++)
            for(k=-50;k<=50;k++)
                if(i!=0&&j!=0&&k!=0)
                    t += mp[25001000-a3*k*k*k-i*i*i*a4-j*j*j*a5];
    printf("%d\n", t);
return 0;
}

 

转载于:https://www.cnblogs.com/Noevon/p/5683610.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值