Codeforces 1214E Petya and Construction set 构造

题目链接:https://www.luogu.org/problem/CF1214E

题意:你需要构造出一个节点数为 2n 的一棵树. 给出 n 个范围在 [1,n] 的正整数 di . 你构造出来的树需要满足: 第 2i1 个点与第 2i 个点在树上的距离恰为di.

这里定义两个点 u , v 之间的距离为 u 到 v 路径上的边数.

如果有多种方案, 输出任意一种即可.

分析:先将2,4,6...2n按照d的大小从大到小排序形成一条主链,之后奇数点都在这条主链上添加(题目已说过d<=n)

对于主链上的第i个点,然后我们枚举i,然后对于每个i[1,n] 只需要执行下面两步就完了:

  • 设链上的第i个点是 ai, 那么令 x=ai+di1 ,将 2i1 与 x 连一条边.
  • 如果 x 是目前链上的最后一个点, 那么把 ai1 放在链尾, 链长度 +1 .
    #include<bits/stdc++.h>
    using namespace std;
    typedef long long ll;
    const int maxn=1e5+7;
    const int N=1e3+7;
    const int inf=0x3f3f3f3f;
    struct node{
        int d,pos;
        bool operator < (const node &a){
            return d>a.d;
        }
    }a[maxn];
    vector<int> v;
    int main(){
        int n;scanf("%d",&n);
        for(int i=1;i<=n;i++){
            scanf("%d",&a[i].d);
            a[i].pos=i<<1;
        }
        sort(a+1,a+1+n);
        for(int i=1;i<n;i++)
        {
            printf("%d %d\n",a[i].pos,a[i+1].pos);
            v.push_back(a[i].pos);
        }
        v.push_back(a[n].pos);
        for(int i=1;i<=n;i++){
            int d=a[i].d+i-2;//a[i].d+i是指的本身对应的那个点所处的位置,-1就是与它相连的主链上的点,这里又减了一次1是因为vector下标从0开始的
            printf("%d %d\n",v[d],a[i].pos-1);
            if(d==v.size()-1) v.push_back(a[i].pos-1);//如果要与之相连的点已经在最后面了,需要再加一点 
        }
        return 0;
    }

     

转载于:https://www.cnblogs.com/qingjiuling/p/11557705.html

### Codeforces 887E Problem Solution and Discussion The problem **887E - The Great Game** on Codeforces involves a strategic game between two players who take turns to perform operations under specific rules. To tackle this challenge effectively, understanding both dynamic programming (DP) techniques and bitwise manipulation is crucial. #### Dynamic Programming Approach One effective method to approach this problem utilizes DP with memoization. By defining `dp[i][j]` as the optimal result when starting from state `(i,j)` where `i` represents current position and `j` indicates some status flag related to previous moves: ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = ...; // Define based on constraints int dp[MAXN][2]; // Function to calculate minimum steps using top-down DP int minSteps(int pos, bool prevMoveType) { if (pos >= N) return 0; if (dp[pos][prevMoveType] != -1) return dp[pos][prevMoveType]; int res = INT_MAX; // Try all possible next positions and update 'res' for (...) { /* Logic here */ } dp[pos][prevMoveType] = res; return res; } ``` This code snippet outlines how one might structure a solution involving recursive calls combined with caching results through an array named `dp`. #### Bitwise Operations Insight Another critical aspect lies within efficiently handling large integers via bitwise operators instead of arithmetic ones whenever applicable. This optimization can significantly reduce computation time especially given tight limits often found in competitive coding challenges like those hosted by platforms such as Codeforces[^1]. For detailed discussions about similar problems or more insights into solving strategies specifically tailored towards contest preparation, visiting forums dedicated to algorithmic contests would be beneficial. Websites associated directly with Codeforces offer rich resources including editorials written after each round which provide comprehensive explanations alongside alternative approaches taken by successful contestants during live events. --related questions-- 1. What are common pitfalls encountered while implementing dynamic programming solutions? 2. How does bit manipulation improve performance in algorithms dealing with integer values? 3. Can you recommend any online communities focused on discussing competitive programming tactics? 4. Are there particular patterns that frequently appear across different levels of difficulty within Codeforces contests?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值