hdu1069Monkey and Banana

本文介绍了一种算法,用于解决如何堆叠方块以获得最大高度的问题,包括输入处理、排序、检查堆叠可行性及更新最大高度的步骤。

类似于求最大子序列的和

#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<math.h>
#include<algorithm>
using namespace std;
int n;
struct T
{
    int a;
    int b;
    int h;
}block[100];
int d[100];
bool cmp(T x,T y)
{
    return x.a*x.b>y.a*y.b;
}
bool check(int x,int y)//y能放到x上
{
    if(block[y].a<block[x].a&&block[y].b<block[x].b)
    {
        return true;
    }
    if(block[y].a<block[x].b&&block[y].b<block[x].a)
    {
        return true;
    }
    return false;
}
int main()
{
    int N;
    int k=1;
    int a,b,c;
    while(scanf("%d",&N),N)
    {
        n=0;
        while(N--)
        {
            scanf("%d %d %d",&a,&b,&c);
            block[n].a=a;block[n].b=b;block[n++].h=c;
            block[n].a=c;block[n].b=b;block[n++].h=a;
            block[n].a=a;block[n].b=c;block[n++].h=b;
        }
        sort(block,block+n,cmp);//保证前面的方块无法堆到后面的方块上
        int i;
        for(i=0;i<n;i++)
        {
            d[i]=block[i].h;
        }
        int j;
        int ans=d[0];
        for(i=1;i<n;i++)
        {
            for(j=0;j<i;j++)
            {
                if(check(j,i)&&d[j]+block[i].h>d[i])//i号方块能放到j号方块上
                {
                    d[i]=d[j]+block[i].h;
                }
            }
            if(ans<d[i])
            {
                ans=d[i];
            }
        }
        printf("Case %d: maximum height = %d\n",k++,ans);
    }
    return 0;
}

转载于:https://www.cnblogs.com/willzhang/archive/2012/08/12/2634388.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值