组合数学1.4&3.10 By cellur925

本文探讨了圆排列的基本概念及应用,通过具体实例讲解了如何计算特定条件下的人群排列方式,包括$n$对夫妻的相邻及不相邻坐法,以及在圆桌上安排人群的不同方案数。

本文引用于清华大学出版社卢开澄、卢华明《组合数学第五版》。

今天我们稍微讨论下圆排列以及$n$对夫妻的问题。

1.4圆周排列

这个问题是:从$n$个人中取$r$个在圆周上,我们用$Q(n,r)$表示这个答案。

类比简单的直线排列,不同之处在于首尾的处理,圆周情况可能会有很多重复。

不难理解,$Q(n,r)$=$P(n,r)$/$n$。

 例1:5个男生,3个女生围一圆桌坐,按照上面的公式,代入我们可以得出式子:$8!$/8=$7!$。

   要求男生$B1$不和女生$G1$x相邻坐?考虑把$G1$排除,7个人围一圆桌,那么有$6!$种方案,$G1$插入有5种方法,所以根据乘法原理,总方案数为$5*6!$。

   要求3个女生不相邻?参考上一问的解题方法,排除他们仨,有$4!$种方案,3个女生依次插入,根据乘法原理,总方案数为$4!*5*4*3$。

例2:$n$对夫妻围一圆桌坐,求每队夫妻相邻而坐的方案数。

     考虑把夫妻二人进行捆绑,看成一个人,那么有$(n-1)!$种方案,因为夫妻左右坐是不定的,所以总方案数为$2^n*(n-1)!$。

例3:有12个人分两桌,每桌6人,围着圆桌而坐,有多少方案?  根据上面的式子,显然有$C(12,6)*(5!)^2$。

    12对夫妻平分为2桌,围圆桌而坐相邻有多少方案?   显然有$C(12,6)*(5!*2^6)^2$。

3.10 $n$对夫妻问题

我们要解决的,是$n$对夫妻围圆桌而坐,求夫妻不相邻的方案数。

这个问题运用了很综合的数论问题,需要用到容斥原理。

我们不妨把这个问题抽象成集合间的问题,令$A_i$表示第i对人坐在一起的集合

$ans=|\overline{A_1}\cap \overline{A_2}\cap \overline{A_3}\cap ...\overline{A_n}|$

(上面那个横线是取反的意思,就是$A_i$表示第i对人坐在一起的集合,那么带个横线就是表示第$i$对人不坐在一起。)

这就是一个容斥原理了。

以下我引用Chemist的题解==

再回顾一下$A_i$的含义,$A_i$表示第i对人坐在一起的集合,那么考虑只有一对人坐在一起有多少种情况呢,可以把这一对人看成一个人,反正他们总要坐在一起,问题就变成了$2n-1$个人围坐在圆桌上,共有$(2n-1-1)!$种情况,注意还要乘上一个2,因为这一对人可以换位,还要再乘上一个C(n,1),因为不同的一对人坐在一起的方案是不同的。其他的同理,这样我们就可以算出后面每个式子的具体值。

$ans=N-\sum_{i=1}^{n}|A_i|+\sum_{i=1}^{n}\sum_{j=i+1}^{n}|A_i\cap A_j|...+(-1)^n|A_1\cap A_2\cap A_3...\cap A_n|$

$=(2n-1)!-2C(n,1)(2n-2)!+2^2C(n,2)(2n-3)!...$

$=\sum_{i=0}^{n}(-1)^i2^iC(n,i)(2n-i-1)!$

ex:有男女各5人,其中3对是夫妻,沿10个位置的圆桌就座,若每对夫妻都要坐在相邻的位置,问有多少种坐法?

把夫妻继续捆绑,变成了7人,那么方案数就是$6!*2^3$

转载于:https://www.cnblogs.com/nopartyfoucaodong/p/9751569.html

本书是《组合数学》第3版的修订版,全书共分8章,分别是:排列组合、递推关系与母函数、容斥原理与鸽巢原理、burnside引理与polya定理、区组设计、线性规划、编码简介、组合算法简介。丰富的实例及理论和实际相结合是本书一大特点,有利于对问题的深入理解。. 本书是计算机系本科生和研究生的教学用书,也可作为数学专业师生的教学参考书。 目录回到顶部↑ 第1排列组合. 1.1 加法法则与乘法法则 1.2 一一对应 1.3 排列组合 1.3.1 排列组合的模型 1.3.2 排列组合问题的举伊 1.4 圆周排列 1.5 排列的生成算法 1.5.1 序数法 1.5.2 字典序法 1.5.3 换位法 1.6 允许重复的组合与不相邻的组合 1.6.1 允许重复的组合 1.6.2 不相邻的组合 1.6.3 线性方程的整数解的个数问题 1.6.4 组合的生成 1.7 组合意义的解释 1.8 应用举例 1.9 stirling公式 1.9.1 wallis公式 .1.9.2 stirling公式的证明 习题 第2章 递推关系与母函数 2.1 递推关系 2.2 母函数 2.3 fibonacci序列 2.3.1 fibonacci序列的递推关系 2.3.2 若干等式 2.4 优选法与fibonacci序列的应用 2.4.1 优选法 2.4.2 优选法的步骤 2.4.3 fibonacci的应用 2.5 母函数的性质 2.6 线性常系数齐次递推关系 2.7 关于线性常系数非齐次递推关系 2.8 整数的拆分 2.9 ferrers图像 2.10 拆分数估计 2.11 指数型母函数 2.11.1 问题的提出 2.11.2 指数型母函数的定义 2.12 广义二项式定理 2.13 应用举例 2.14 非线性递推关系举例 2.14.1 stirling数 2.14.2 catalan数 2.14.3 举例 2.15 递推关系解法的补充 习题 第3章 容斥原理与鸽巢原理 3.1 demorgan定理 3.2 容斥定理 3.3 容斥原理举例 3.4 棋盘多项式与有限制条件的排列 3.5 有禁区的排列 3.6 广义的容斥原理 3.6.1 容斥原理的推广 3.6.2 一般公式 3.7 广义容斥原理的应用 3.8 第二类stirling数的展开式 3.9 欧拉函数φ(n) 3.10 n对夫妻问题 3.11 mobius反演定理 3.12 鸽巢原理 3.13 鸽巢原理举例 3.14 鸽巢原理的推广 3.14.1 推广形式之一 3.14.2 应用举例 3.14.3 推广形式之二 3.15 ramsey数 3.15.1 ramsey问题 3.15.2 ramsey数 习题 第4章 burnside引理与polya定理 4.1 群的概念 4.1.1 定义 4.1.2 群的基本性质 4.2 置换群 4.3 循环、奇循环与偶循环 4.4 burnside引理 4.4.1 若干概念 4.4.2 重要定理 4.4.3 举例说明.. 4.5 polya定理 4.6 举例 4.7 母函数形式的polya定理 4.8 图的计数 4.9 polya定理的若干推广 习题 第5章 区组设计 5.1 问题的提出 5.2 拉丁方与正交的拉丁方 5.2.1 问题的引入 5.2.2 正交拉丁方及其性质 5.3 域的概念 5.4 galois域gf(pm) 5.5 正交拉丁方的构造 5.6 正交拉丁方的应用举例 5.7 均衡不完全的区组设计 5.7.1 基本概念 5.7.2 (b,u,r,k,λ)-设计 5.8 区组设计的构成方法 5.9 steiner三元素 5.10 kirkman女生问题 习题 第6章 线性规划 6.1 问题的提出 6.2 线性规划的问题 6.3 凸集 6.4 线性规划的几何意义 6.5 单纯形法的理论基础 6.5.1 松弛变量 6.5.2 解的充要条件 6.6 单纯形法与单纯形表格 6.7 改善的单纯形法 6.8 对偶概念 6.9 对偶单纯形法 习题 第7章 编码简介 7.1 基本概念 7.2 对称二元信道 7.3 纠错码 7.3.1 最近邻法则 7.3.2 hamming不等式 7.4 若干简单的编码 7.4.1 重复码 7.4.2 奇偶校验码 7.5 线性码 7.5.1 生成矩阵与校验矩阵 7.5.2 关于生成矩阵和校验矩阵的定理 7.5.3 译码步骤 7.6 hamming码 7.7 bch码 习题 第8章 组合算法简介 8.1 归并排序 8.1.1 算法 8.1.2 举例 8.1.3 复杂性分析 8.2 快速排序 8.2.1 算法的描述 8.2.2 复杂性分析 8.3 ford-johnson排序法 8.4 排序的复杂性下界 8.5 求第是个元素 8.6 排序网络 8.6.1 0-1原理 8.6.2 bn网络 8.6.3 复杂性分析 8.6.4 batcher奇偶归并网络 8.7 快速傅里叶变换 8.7.1 问题的提出 8.7.2 预备定理 8.7.3 快速算法 8.7.4 复杂性分析 8.8 dfs算法 8.9 bfs算法 8.10 αβ剪技术 8.11 状态与图 8.12 分支定界法 8.12.1 tsm问题 8.12.2 任务安排问题 8.13 最短树与kruskal算法 8.14 huffman树 8.15 多段判决 8.15.1 问题的提出 8.15.2 最佳原理 8.15.3 矩阵链积问题 8.15.4 图的两点间最短路径
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值