House Robber II

本文探讨了在圆周排列的房屋中窃贼如何最大化收益的问题,通过动态规划算法解决,提供了一种有效的解决方案。

Note: This is an extension of House Robber.

After robbing those houses on that street, the thief has found himself a new place for his thievery so that he will not get too much attention. This time, all houses at this place are arranged in a circle. That means the first house is the neighbor of the last one. Meanwhile, the security system for these houses remain the same as for those in the previous street.

Given a list of non-negative integers representing the amount of money of each house, determine the maximum amount of money you can rob tonight without alerting the police.

Credits:
Special thanks to @Freezen for adding this problem and creating all test cases.

 

Analyse: we should consider if the first house can be robbed. If we rob the first house, then the last house cannot be robbed. Instead, if we do not rob the first house, then we can rob the last house. Do the DP process two times and return the larger one.

Runtime: 0ms.

 1 class Solution {
 2 public:
 3     int rob(vector<int>& nums) {
 4         if(nums.size() == 0) return 0;
 5         if(nums.size() == 1) return nums[0];
 6         
 7         return max(helper(nums, 0, nums.size() - 1),
 8                    helper(nums, 1, nums.size()));
 9     }
10     int helper(vector<int>& nums, int start, int end){
11         int result = nums[start], dp1 = 0, dp2 = 0;
12         for(int i = start + 1; i < end; i++){
13             dp2 = dp1; //after computing, original dp1 becomes dp2
14             dp1 = result; //original result becomes dp1
15             result = max(dp1, dp2 + nums[i]);
16         }
17         return result;
18     }
19 };

 

转载于:https://www.cnblogs.com/amazingzoe/p/4743168.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值