吴裕雄 python 机器学习——模型选择参数优化暴力搜索寻优GridSearchCV模型

Python与人工智能相关转载内容
此博客为转载内容,原链接为https://www.cnblogs.com/tszr/p/10802679.html ,标签涉及Python和人工智能。
import scipy

from sklearn.datasets import load_digits
from sklearn.metrics import classification_report
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV,RandomizedSearchCV

#模型选择参数优化暴力搜索寻优GridSearchCV模型
def test_GridSearchCV():
    '''
    测试 GridSearchCV 的用法。使用 LogisticRegression 作为分类器,主要优化 C、penalty、multi_class 等参数
    '''
    ### 加载数据
    digits = load_digits()
    X_train,X_test,y_train,y_test=train_test_split(digits.data, digits.target,test_size=0.25,random_state=0,stratify=digits.target)
    #### 参数优化 ######
    tuned_parameters = [{'penalty': ['l1','l2'],
                        'C': [0.01,0.05,0.1,0.5,1,5,10,50,100],
                        'solver':['liblinear'],
                        'multi_class': ['ovr']},
                        {'penalty': ['l2'],
                        'C': [0.01,0.05,0.1,0.5,1,5,10,50,100],
                         'solver':['lbfgs'],
                        'multi_class': ['ovr','multinomial']},
                        ]
    clf=GridSearchCV(LogisticRegression(tol=1e-6),tuned_parameters,cv=10)
    clf.fit(X_train,y_train)
    print("Best parameters set found:",clf.best_params_)
    print("Grid scores:")
#     for params, mean_train_score, mean_test_score in clf.cv_results_.params,cv_results_.mean_train_score,cv_results_.mean_test_score:
#         print("\t%0.3f (+/-%0.03f) for %s" % (mean_train_score, mean_test_score() * 2, params))
    print((clf.cv_results_["mean_train_score"], clf.cv_results_["mean_test_score"] * 2, clf.cv_results_["params"]))

    print("Optimized Score:",clf.score(X_test,y_test))
    print("Detailed classification report:")
    y_true, y_pred = y_test, clf.predict(X_test)
    print(classification_report(y_true, y_pred))
    
#调用test_GridSearchCV()
test_GridSearchCV()

 

转载于:https://www.cnblogs.com/tszr/p/10802679.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值