人工智能入门(四):uncertainty&基于统计的学习

本文深入探讨了概率图模型的基础概念,包括信念网络和马尔科夫网络,详细讲解了独立性、条件化和D-分离等原理。涵盖了变量消元、桶消除算法、消息传递、MAP和ML估计、贝叶斯分类器等内容。讨论了处理缺失变量的方法,如EM算法,并介绍了多种采样技术,如吉布斯采样和粒子滤波。最后,涉及了动态模型,如隐马尔可夫模型和卡尔曼滤波。

1.belief networks (indenpendence, collider,conditioning / marginalization,connection graph,independence in belief networks,D-separation,uncertain and unreliable evidence)Belief and Markov Networks

2.inference, general inference(variable elimination,bucket elimination algorithm), message passing idea(sum-product algorithm,`belief propagation' or `dynamic programming',max-product algorithm,loop-cut conditioning) 

for singly connected graphs: sum-product, max-product;

for multiply connected graphs: loop-cut conditioning, bucket elimination;

3.MAP,ML,(KL Divergence),Naive Bayes Classier,Using a Beta prior

4.dealing with miss variables: Missing Completely at random (MCAR), Missing at random(MAR),Missing NOT at random (MNAR),Expectation Maximisation(EM algorithm)

5.sampling(univariate,rejection,multi-variate,ancestral, Gibbs, importance, sequential importance,particle filter)

6.dynamical models(HMM(filtering, smoothing,prediction),Viterbi, Kalman, particle Filtering (bootstrap filtering)

转载于:https://www.cnblogs.com/yizhaoAI/p/9944780.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值