自然语言处理概念总结

TF-IDF(term frequency–inverse document frequency)

这是一种用于信息检索的一种常用加权技术。它是一种统计方法,用以评估一个字词对于一个文件集或一个语料库中的其中一份文件的重要程度。字词的重要性随着它在文件中出现的次数成正比增加,但同时会随着它在语料库中出现的频率成反比下降。

假如一篇文件的总词语数是100个,而词语“母牛”出现了3次,那么“母牛”一词在该文件中的词频就是 0.03 (3/100)。一个计算文件频率(DF) 的方法是测定有多少份文件出现过“母牛”一词,然后除以文件集里包含的文件总数。所以,如果“母牛”一词在1,000份文件出现过,而文件总数是 10,000,000份的话,其文件频率就是 0.0001 (1000/10,000,000)。最后,TF-IDF分数就可以由计算词频除以文件频率而得到。以上面的例子来说,“母牛”一词在该文件集的TF- IDF分数会是 300 (0.03/0.0001)。这条公式的另一个形式是将文件频率取对数。

 

TF/IDF实现
http://www.codeproject.com/KB/cs/tfidf.aspx

转载于:https://www.cnblogs.com/junshichao/archive/2012/04/06/2434051.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值