multiple kernel learning presentation 思路

博客主要介绍支持向量机(SVM),包括其作为分类器的概念、支持向量的作用、特性及应用。还阐述了核方法、核矩阵,介绍了SMO算法和多核学习(MLK),提出新的对偶公式应用SMO解决非光滑凸问题,模拟显示SMO比普通Mosek更快。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Overall introduction of the topic, the keywords, the references.

Part 1: Introduction on svm(5 min)

  first show that svm is what kind of a classifier. via graphs and examples. The notion of support vectors . the use of support vectors.

  svm characteristic:largest margin,geometric margin and function margin, induction,finally reduced to a QP problem.

 

  svm applications

Part 2: kernel method and kernel matrix (5 min)

  why kernel method

  what's kernel method for 

  the notion of kernel functions.

  the notion of similarity function

  inner product

  example

Part 3: the SMO algorithm

 

Part 4:  muliple kernel learning(20 min)

  why MLK-------the need for flexibility to combine different kernel matrix linearly.

  what MLK yields and where the problem lies

  the formulation of MLK problem

  the notion of SKM and the induction of it.   Primal problem --> Dual problem-->KKT-->some conclusions 

  kernelization-->the kernelized problem formulation

  Equavalence of the two formulation

  why we can't solve it

  regularize SKM: the dual problem -->solving the MY-regularized problem using SMO

Conclusion

  propose a novel dual formulation to apply SMO to MY-regularized non-smooth convex problem.

  and the author's simulation show that the SMO will be faster than the normal Mosek

  

  

  

 

转载于:https://www.cnblogs.com/huang-kun/p/3510959.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值