hdu-5775 Bubble Sort(树状数组)

本文介绍了一个关于冒泡排序过程中元素位置变化的问题,通过分析每个元素可能达到的最左与最右位置,利用树状数组求解逆序数来计算位置差,最终输出每个数字位置变化的绝对值。

题目链接:

Bubble Sort

Time Limit: 2000/1000 MS (Java/Others)   

 Memory Limit: 65536/65536 K (Java/Others)



Problem Description
 
P is a permutation of the integers from 1 to N(index starting from 1).
Here is the code of Bubble Sort in C++.

for(int i=1;i<=N;++i)
for(int j=N,t;j>i;—j)
if(P[j-1] > P[j])
t=P[j],P[j]=P[j-1],P[j-1]=t;

After the sort, the array is in increasing order. ?? wants to know the absolute values of difference of rightmost place and leftmost place for every number it reached.
 

 

Input
 
The first line of the input gives the number of test cases T; T test cases follow.
Each consists of one line with one integer N, followed by another line with a permutation of the integers from 1 to N, inclusive.

limits
T <= 20
1 <= N <= 100000
N is larger than 10000 in only one case. 
 

 

Output
 
For each test case output “Case #x: y1 y2 … yN” (without quotes), where x is the test case number (starting from 1), and yi is the difference of rightmost place and leftmost place of number i.
 

 

Sample Input
 
2
3
3 1 2
3
1 2 3
 

 

Sample Output
 
Case #1: 1 1 2
Case #2: 0 0 0
 
题意:问冒泡排序的过程中每个数最右位置和最左位置的差是多少;
 
思路:
一个数a[i]最左的位置为min(i,a[i]);最右的位置为:若其后有x个它大的数max(a[i],n-x);x可以由n-a[i]-逆序数得到;就是树状数组求一下逆序数;
 
AC代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <bits/stdc++.h>
#include <stack>

using namespace std;

#define For(i,j,n) for(int i=j;i<=n;i++)
#define mst(ss,b) memset(ss,b,sizeof(ss));

typedef  long long LL;

template<class T> void read(T&num) {
    char CH; bool F=false;
    for(CH=getchar();CH<'0'||CH>'9';F= CH=='-',CH=getchar());
    for(num=0;CH>='0'&&CH<='9';num=num*10+CH-'0',CH=getchar());
    F && (num=-num);
}
int stk[70], tp;
template<class T> inline void print(T p) {
    if(!p) { puts("0"); return; }
    while(p) stk[++ tp] = p%10, p/=10;
    while(tp) putchar(stk[tp--] + '0');
    putchar('\n');
}

const LL mod=20071027;
const double PI=acos(-1.0);
const int inf=1e9;
const int N=4e5+10;
const int maxn=500+10;
const double eps=1e-8;


int sum[N],ans[N],a[N],n;
int lowbit(int x)
{
    return x&(-x);
}
void update(int x)
{
    while(x)
    {
        sum[x]++;
        x-=lowbit(x);
    }
}
int query(int x)
{
    int s=0;
    while(x<=n)
    {
        s+=sum[x];
        x+=lowbit(x);
    }
    return s;
}


int main()
{       
        int t,Case=0;
        read(t);
        while(t--)
        {
            mst(sum,0);
            read(n);
            For(i,1,n)read(a[i]);
            int l,r;
            For(i,1,n)
            {
                l=min(i,a[i]);
                 r=a[i]+query(a[i]);
                 update(a[i]);
                ans[a[i]]=r-l;
            }
            printf("Case #%d: ",++Case);
            For(i,1,n-1)printf("%d ",ans[i]);printf("%d\n",ans[n]);
        }    
        return 0;
}

  

转载于:https://www.cnblogs.com/zhangchengc919/p/5716170.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值