ZOJ 3981 && 2017CCPC秦皇岛 A:Balloon Robot(思维题)

本文探讨了一个关于比赛现场气球发放的问题,通过机器人在固定轨道上移动并为解决问题的团队发放气球,目标是最小化所有团队的累积不满情绪。文章提供了一种有效的算法来解决该问题。
A - Balloon Robot
Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%lld & %llu

Description

The 2017 China Collegiate Programming Contest Qinhuangdao Site is coming! There will be \(n\) teams participating in the contest, and the contest will be held on a huge round table with \(m\) seats numbered from 1 to \(m\) in clockwise order around it. The \(i\)-th team will be seated on the \(s_i\)-th seat.

BaoBao, an enthusiast for competitive programming, has made \(p\) predictions of the contest result before the contest. Each prediction is in the form of \((a_i,b_i)\), which means the \(a_i\)-th team solves a problem during the \(b_i\)-th time unit.

As we know, when a team solves a problem, a balloon will be rewarded to that team. The participants will be unhappy if the balloons take almost centuries to come. If a team solves a problem during the \(t_a\)-th time unit, and the balloon is sent to them during the \(t_b\)-th time unit, then the unhappiness of the team will increase by \(t_b-t_a\). In order to give out balloons timely, the organizers of the contest have bought a balloon robot.

At the beginning of the contest (that is to say, at the beginning of the 1st time unit), the robot will be put on the \(k\)-th seat and begin to move around the table. If the robot moves past a team which has won themselves some balloons after the robot's last visit, it will give all the balloons they deserve to the team. During each unit of time, the following events will happen in order:

  1. The robot moves to the next seat. That is to say, if the robot is currently on the \(i\)-th (\(1 \le i < m\)) seat, it will move to the (\(i+1\))-th seat; If the robot is currently on the \(m\)-th seat, it will move to the 1st seat.
  2. The participants solve some problems according to BaoBao's prediction.
  3. The robot gives out balloons to the team seated on its current position if needed.

BaoBao is interested in minimizing the total unhappiness of all the teams. Your task is to select the starting position \(k\) of the robot and calculate the minimum total unhappiness of all the teams according to BaoBao's predictions.

Input

There are multiple test cases. The first line of the input contains an integer \(T\), indicating the number of test cases. For each test case:

The first line contains three integers \(n\), \(m\) and \(p\) (\(1 \le n \le 10^5\), \(n \le m \le 10^9\), \(1 \le p \le 10^5\)), indicating the number of participating teams, the number of seats and the number of predictions.

The second line contains \(n\) integers \(s_1, s_2, \dots, s_n\) (\(1 \le s_i \le m\), and \(s_i \ne s_j\) for all \(i \ne j\)), indicating the seat number of each team.

The following \(p\) lines each contains two integers \(a_i\) and \(b_i\) (\(1 \le a_i \le n\), \(1 \le b_i \le 10^9\)), indicating that the \(a_i\)-th team solves a problem at time \(b_i\) according to BaoBao's predictions.

It is guaranteed that neither the sum of \(n\) nor the sum of \(p\) over all test cases will exceed \(5 \times 10^5\).

Output

For each test case output one integer, indicating the minimum total unhappiness of all the teams according to BaoBao's predictions.

Sample Input

4
2 3 3
1 2
1 1
2 1
1 4
2 3 5
1 2
1 1
2 1
1 2
1 3
1 4
3 7 5
3 5 7
1 5
2 1
3 3
1 5
2 5
2 100 2
1 51
1 500
2 1000

Sample Output

1
4
5
50
Hint

For the first sample test case, if we choose the starting position to be the 1st seat, the total unhappiness will be (3-1) + (1-1) + (6-4) = 4. If we choose the 2nd seat, the total unhappiness will be (2-1) + (3-1) + (5-4) = 4. If we choose the 3rd seat, the total unhappiness will be (1-1) + (2-1) + (4-4) = 1. So the answer is 1.

For the second sample test case, if we choose the starting position to be the 1st seat, the total unhappiness will be (3-1) + (1-1) + (3-2) + (3-3) + (6-4) = 5. If we choose the 2nd seat, the total unhappiness will be (2-1) + (3-1) + (2-2) + (5-3) + (5-4) = 6. If we choose the 3rd seat, the total unhappiness will be (1-1) + (2-1) + (4-2) + (4-3) + (4-4) = 4. So the answer is 4.

 

题意:
第一行三个数字n, m, q表示有m个座位围成一个环,n个队伍,q次A题
接下来n个数表示n个队伍所在位置(1<=ai<=m)
再接下来q行,每行a, b表示第a个队伍在第b秒A了一道题
有一个只会每一秒顺时针移动一个位置的发气球机器人
只要当前队伍有题目已经A了就会给他对应数量的气球(当然每道题最多1个气球)
如果a队伍在b时刻A了一道题,并在c时刻才拿到气球,那么这个队伍就会积累c-b点不开心值
求一个机器人起始位置(一开始是第0秒)使得所有队伍最终不开心值之和最小
分析:
假设机器人就在位置1,可以O(n)求出所有人的不开心值,排个序
之后暴力枚举初始位置,每移动1个位置可以使得所有不开心值不为0的队伍不开心值-1,
不开心值为0的队伍不开心值变为m,因为排过序所以这个可以O(1)转移
复杂度O(m)
m太大但其实有些位置一定不可能是最优的,
所以理论上只用枚举最多q个位置即可

可以写一下机器从1 2 3 开始 各个气球点的等待时代,发现是每次-1 -1,0就变为m。
那么就假设从1开始,得到每个气球的等待数组b。
给b排个序,用重复的只要算一次。 让i这个点等于0
(即减了b[i]),那么i前面的点都加了m。
所有的点都减了b[i]。就可以遍历一次答案,取最小。
 
#include<stdio.h>
#include<iostream>
#include<vector>
#include <cstring>
#include <stack>
#include <cstdio>
#include <cmath>
#include <queue>
#include <algorithm>
#include <vector>
#include <set>
#include <map>
#include<string>
#include<math.h>
#define max_v 1000005
#define INF 999999999
using namespace std;
typedef long long LL;
LL a[max_v];
LL b[max_v];
int main()
{
    int t;
    scanf("%d",&t);
    while(t--)
    {
        //n个队伍 m个座位 k次ac事件
        LL n,m,k;
        scanf("%lld %lld %lld",&n,&m,&k);

        //n个队伍的位置
        for(LL i=1;i<=n;i++)
            scanf("%lld",&a[i]);

        LL id,time;//队伍id和ac某题的时间
        LL sum=0;
        for(LL i=1;i<=k;i++)//假设机器人位置在1 得到所有队伍的不高兴值排序
        {
            scanf("%lld %lld",&id,&time);
            time=time%m;
            if(time==0)
                time=m;
            b[i]=(a[id]-time+m)%m;
            sum+=b[i];
        }

        sort(b+1,b+k+1);//将所有队伍的不高兴值排序
        long long  ans=0x3f3f3f3f3f3f3f3f;
        b[0]=-1;
        for(LL i=1;i<=k;i++)
        {
            if(b[i]!=b[i-1])
                ans=min(ans,sum-k*b[i]+(i-1)*m);
        }
        printf("%lld\n",ans);
    }
    return 0;
}
/*
题意:
第一行三个数字n, m, q表示有m个座位围成一个环,n个队伍,q次A题
接下来n个数表示n个队伍所在位置(1<=ai<=m)
再接下来q行,每行a, b表示第a个队伍在第b秒A了一道题
有一个只会每一秒顺时针移动一个位置的发气球机器人
只要当前队伍有题目已经A了就会给他对应数量的气球(当然每道题最多1个气球)
如果a队伍在b时刻A了一道题,并在c时刻才拿到气球,那么这个队伍就会积累c-b点不开心值
求一个机器人起始位置(一开始是第0秒)使得所有队伍最终不开心值之和最小

分析:
假设机器人就在位置1,可以O(n)求出所有人的不开心值,排个序
之后暴力枚举初始位置,每移动1个位置可以使得所有不开心值不为0的队伍不开心值-1,
不开心值为0的队伍不开心值变为m,因为排过序所以这个可以O(1)转移
复杂度O(m)
m太大但其实有些位置一定不可能是最优的,
所以理论上只用枚举最多q个位置即可


可以写一下机器从1 2 3 开始 各个气球点的等待时代,发现是每次-1 -1,0就变为m。

那么就假设从1开始,得到每个气球的等待数组b。
给b排个序,用重复的只要算一次。 让i这个点等于0
(即减了b[i]),那么i前面的点都加了m。
所有的点都减了b[i]。就可以遍历一次答案,取最小。

*/

 

 

转载于:https://www.cnblogs.com/yinbiao/p/9516695.html

SpringBoot智能在线预约挂号系统研究AI更换标第1章引言介绍智能在线预约挂号系统的研究背景、意义、国内外研究现状及论文创新点。1.1研究背景与意义阐述智能在线预约挂号系统对提升医疗服务效率的重要性。1.2国内外研究现状分析国内外智能在线预约挂号系统的研究与应用情况。1.3研究方法及创新点概述本文采用的技术路线、研究方法及主要创新点。第2章相关理论总结智能在线预约挂号系统相关理论,包括系统架构、开发技术等。2.1系统架构设计理论介绍系统架构设计的基本原则和常用方法。2.2SpringBoot开发框架理论阐述SpringBoot框架的特点、优势及其在系统开发中的应用。2.3数据库设计与管理理论介绍数据库设计原则、数据模型及数据库管理系统。2.4网络安全与数据保护理论讨论网络安全威胁、数据保护技术及其在系统中的应用。第3章SpringBoot智能在线预约挂号系统设计详细介绍系统的设计方案,包括功能模块划分、数据库设计等。3.1系统功能模块设计划分系统功能模块,如用户管理、挂号管理、医生排班等。3.2数据库设计与实现设计数据库表结构,确定字段类型、主键及外键关系。3.3用户界面设计设计用户友好的界面,提升用户体验。3.4系统安全设计阐述系统安全策略,包括用户认证、数据加密等。第4章系统实现与测试介绍系统的实现过程,包括编码、测试及优化等。4.1系统编码实现采用SpringBoot框架进行系统编码实现。4.2系统测试方法介绍系统测试的方法、步骤及测试用例设计。4.3系统性能测试与分析对系统进行性能测试,分析测试结果并提出优化建议。4.4系统优化与改进根据测试结果对系统进行优化和改进,提升系统性能。第5章研究结果呈现系统实现后的效果,包括功能实现、性能提升等。5.1系统功能实现效果展示系统各功能模块的实现效果,如挂号成功界面等。5.2系统性能提升效果对比优化前后的系统性能
在金融行业中,对信用风险的判断是核心环节之一,其结果对机构的信贷政策和风险控制策略有直接影响。本文将围绕如何借助机器学习方法,尤其是Sklearn工具包,建立用于判断信用状况的预测系统。文中将涵盖逻辑回归、支持向量机等常见方法,并通过实际操作流程进行说明。 一、机器学习基本概念 机器学习属于人工智能的子领域,其基本理念是通过数据自动学习规律,而非依赖人工设定规则。在信贷分析中,该技术可用于挖掘历史数据中的潜在规律,进而对未来的信用表现进行预测。 二、Sklearn工具包概述 Sklearn(Scikit-learn)是Python语言中广泛使用的机器学习模块,提供多种数据处理和建模功能。它简化了数据清洗、特征提取、模型构建、验证与优化等流程,是数据科学项目中的常用工具。 三、逻辑回归模型 逻辑回归是一种常用于分类任务的线性模型,特别适用于二类问。在信用评估中,该模型可用于判断借款人是否可能违约。其通过逻辑函数将输出映射为0到1之间的概率值,从而表示违约的可能性。 四、支持向量机模型 支持向量机是一种用于监督学习的算法,适用于数据维度高、样本量小的情况。在信用分析中,该方法能够通过寻找最佳分割面,区分违约与非违约客户。通过选用不同核函数,可应对复杂的非线性关系,提升预测精度。 五、数据预处理步骤 在建模前,需对原始数据进行清理与转换,包括处理缺失值、识别异常点、标准化数值、筛选有效特征等。对于信用评分,常见的输入变量包括收入水平、负债比例、信用历史记录、职业稳定性等。预处理有助于减少噪声干扰,增强模型的适应性。 六、模型构建与验证 借助Sklearn,可以将数据集划分为训练集和测试集,并通过交叉验证调整参数以提升模型性能。常用评估指标包括准确率、召回率、F1值以及AUC-ROC曲线。在处理不平衡数据时,更应关注模型的召回率与特异性。 七、集成学习方法 为提升模型预测能力,可采用集成策略,如结合多个模型的预测结果。这有助于降低单一模型的偏差与方差,增强整体预测的稳定性与准确性。 综上,基于机器学习的信用评估系统可通过Sklearn中的多种算法,结合合理的数据处理与模型优化,实现对借款人信用状况的精准判断。在实际应用中,需持续调整模型以适应市场变化,保障预测结果的长期有效性。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值