[HNOI2008]玩具装箱TOY

本文提供了一道洛谷P3195动态规划问题的详细解答,利用斜率优化技巧简化了DP方程求解过程,并附带完整C++代码实现。

链接:https://www.luogu.org/problemnew/show/P3195

题解:

dp方程很显然

然后会发现这个是可以用斜率优化的

代码:

 

#include <bits/stdc++.h>
using namespace std;
#define maxn 100000
#define ll long long
ll n,L,a[maxn],sum[maxn],q[maxn],h,t,dp[maxn];
ll getdp(ll i,ll j)
{
  return(dp[j]+pow(sum[i]-sum[j]-L,2));
}
ll getup(ll i,ll j)
{
  return(dp[i]+sum[i]*sum[i]+2*sum[i]*L-
        (dp[j]+sum[j]*sum[j]+2*sum[j]*L));
}
ll getdown(ll i,ll j)
{
  return(2*sum[i]-2*sum[j]);
}
int main()
{
  std::ios::sync_with_stdio(false);
  cin>>n>>L; L++;
  for (ll i=1;i<=n;i++) cin>>a[i];
  for (ll i=1;i<=n;i++) sum[i]=sum[i-1]+a[i]+1;
  h=1; t=1; q[h]=0;
  for (ll i=1;i<=n;i++)
  {
    while (h<t&&getup(q[h+1],q[h])
    <=(sum[i]*getdown(q[h+1],q[h]))) h++;
    dp[i]=getdp(i,q[h]);
    while (h<t&&getup(i,q[t])*getdown(q[t],q[t-1])<=
    getup(q[t],q[t-1])*getdown(i,q[t])) t--;
    q[++t]=i;
  }
  cout<<dp[n];
}

代码挺简单的,改一下子函数的模板就好了

转载于:https://www.cnblogs.com/yinwuxiao/p/8476185.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值