区间覆盖问题,区间绝对位置并不重要,重要的是各个更新的区间段之间的相对位置关系。
举例而言,离散化将区间更新[1,100], [2, 50]更换为区间更新[1,4], [2,3]。
离散化可以将空间复杂度从O(L)降到O(N),进而也降低了更新和查询操作的复杂度。
用一个map来记录绝对位置与相对位置间的映射。
需要注意的是,离散化的线段树的叶子节点是[i, i+1]而不是[i, i],区间分解时要考虑到这一点。
代码如下:
#include <stdio.h>
#include <cassert>
#include <algorithm>
#include <cstring>
#include <map>
#define N 100005
typedef
struct _seg_tree_ {
int left, right;
int val;
bool lazy_tag;
_seg_tree_ *lson = NULL, *rson = NULL;
_seg_tree_(int left_idx, int right_idx, int value)
: left(left_idx), right(right_idx), val(value), lazy_tag(false) {}
} seg_tree, *pseg_tree;
int data[2 * N];
int sorted_data[2 * N];
std::map<int, int> seq_map;
bool visible[N];
pseg_tree construct_seg_tree(int left, int right) {
if (left + 1 == right) {
return new seg_tree(left, right, 0);
}
int mid = left + (right - left) / 2;
pseg_tree lson = construct_seg_tree(left, mid);
pseg_tree rson = construct_seg_tree(mid, right);
pseg_tree ans = new seg_tree(left, right, 0);
ans->lson = lson;
ans->rson = rson;
return ans;
}
void lazy_down(pseg_tree proot) {
proot->lazy_tag = false;
if (proot->lson != NULL) {
proot->lson->lazy_tag = true;
proot->lson->val = proot->val;
}
if (proot->rson != NULL) {
proot->rson->lazy_tag = true;
proot->rson->val = proot->val;
}
}
void query_seg_tree(pseg_tree proot) {
if (proot->lazy_tag == true) {
visible[proot->val] = true;
return;
}
if (proot->lson != NULL) {
query_seg_tree(proot->lson);
}
if (proot->rson != NULL) {
query_seg_tree(proot->rson);
}
}
void modify_seg_tree(pseg_tree proot, int left, int right, int val) {
if (left == proot->left && right == proot->right) {
proot->val = val;
proot->lazy_tag = true;
return;
}
int mid = proot->left + (proot->right - proot->left) / 2;
if (proot->lazy_tag == true) {
lazy_down(proot);
}
if (left >= mid) {
modify_seg_tree(proot->rson, left, right, val);
}
else if (right <= mid) {
modify_seg_tree(proot->lson, left, right, val);
}
else {
modify_seg_tree(proot->rson, mid, right, val);
modify_seg_tree(proot->lson, left, mid, val);
}
}
int main(){
int n, l;
scanf("%d%d", &n, &l);
for (int i = 0; i < n; i++) {
scanf("%d%d", data + 2 * i, data + 2 * i + 1);
}
memcpy(sorted_data, data, 2 * n * sizeof(int));
std::sort(sorted_data, sorted_data + 2 * n);
int len = std::unique(sorted_data, sorted_data + 2 * n) - sorted_data;
for (int i = 0; i < len; i++) {
seq_map.insert(std::make_pair(sorted_data[i], i + 1));
}
pseg_tree proot = construct_seg_tree(1, len);
for (int i = 0; i < n; i++) {
int l = seq_map.find(data[2 * i])->second;
int r = seq_map.find(data[2 * i + 1])->second;
modify_seg_tree(proot, l, r, i + 1);
}
query_seg_tree(proot);
int ans = 0;
for (int i = 1; i <= n; i++) {
if (visible[i]) ans++;
}
printf("%d\n", ans);
return 0;
}