the conception of Machine Learning 1 Hidden layer Heteroskedasticity Hessian Matrix Hyperparameter tuning How To Choose Hidden Unit Activiation Functions Bias-Variance Tradeoff alpha in ridge regression Bootstrapping, Transmission Gate capacity Common Optimizers of Neural Nets K-Fold Cross-Validation Common Output Layer Activation Functions Concave & convex function cross-entropy conditional probability Cost and Lost Functions Confidence Intervals F1 Exploding Gradient Problem error type Finding Linear Regression Parameters Gradient Descent Gradient Descent rule of thume The Unknow Word The First ColumnThe Second Columnthume 转载于:https://www.cnblogs.com/hugeng007/p/9459682.html