dsu on tree

dsu on tree

说白了就是树上启发式合并,基于树剖
适用于不带修改的子树信息查询
复杂度\(O(n \log n)\)
例题CF600E

对于每个点,暴力统计轻儿子子树信息,最后再统计重儿子
如果该点为重儿子,保留信息
否则再做一遍清空信息
由于每个点到根只有\(O(\log n)\)条轻边,所以只会被统计\(O(\log n)\)
所以复杂度是\(O(n \log n)\)

那么这题就是裸题了【其实这题有若干其它做法,之前写过一个线段树合并的做法】

#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<vector>
#include<queue>
#include<cmath>
#include<map>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define cls(s,v) memset(s,v,sizeof(s))
#define mp(a,b) make_pair<int,int>(a,b)
#define cp pair<int,int>
using namespace std;
const int maxn = 100005,maxm = 100005,INF = 0x3f3f3f3f;
inline int read(){
    int out = 0,flag = 1; char c = getchar();
    while (c < 48 || c > 57){if (c == '-') flag = 0; c = getchar();}
    while (c >= 48 && c <= 57){out = (out << 1) + (out << 3) + c - 48; c = getchar();}
    return flag ? out : -out;
}
LL tot,ans[maxn];
int n,sum[maxn],c[maxn],vis[maxn],maxv;
int siz[maxn],son[maxn],fa[maxn];
int h[maxn],ne = 1;
struct EDGE{int to,nxt;}ed[maxn << 1];
inline void build(int u,int v){
    ed[++ne] = (EDGE){v,h[u]}; h[u] = ne;
    ed[++ne] = (EDGE){u,h[v]}; h[v] = ne;
}
void dfs1(int u){
    siz[u] = 1;
    Redge(u) if ((to = ed[k].to) != fa[u]){
        fa[to] = u; dfs1(to);
        siz[u] += siz[to];
        if (!son[u] || siz[to] > siz[son[u]]) son[u] = to;
    }
}
void cal(int u,int t){
    sum[c[u]] += t;
    if (t > 0 && sum[c[u]] >= maxv){
        if (sum[c[u]] > maxv) maxv = sum[c[u]],tot = 0;
        
        tot += c[u];
    }
    Redge(u) if (!vis[to = ed[k].to] && (to != fa[u]))
        cal(to,t);
}
void dfs2(int u,int remain){
    Redge(u) if ((to = ed[k].to) != fa[u] && to != son[u])
        dfs2(to,0);
    if (son[u]) dfs2(son[u],1),vis[son[u]] = true;
    cal(u,1); ans[u] = tot;
    if (son[u]) vis[son[u]] = false;
    if (!remain) cal(u,-1),tot = maxv = 0;
}
int main(){
    n = read();
    REP(i,n) c[i] = read();
    for (int i = 1; i < n; i++) build(read(),read());
    dfs1(1);
    dfs2(1,0);
    REP(i,n) printf("%I64d ",ans[i]);
    return 0;
}

转载于:https://www.cnblogs.com/Mychael/p/9266403.html

内容概要:该PPT详细介绍了企业架构设计的方法论,涵盖业务架构、数据架构、应用架构和技术架构四大核心模块。首先分析了企业架构现状,包括业务、数据、应用和技术四大架构的内容和关系,明确了企业架构设计的重要性。接着,阐述了新版企业架构总体框架(CSG-EAF 2.0)的形成过程,强调其融合了传统架构设计(TOGAF)和领域驱动设计(DDD)的优势,以适应数字化转型需求。业务架构部分通过梳理企业级和专业级价值流,细化业务能力、流程和对象,确保业务战略的有效落地。数据架构部分则遵循五大原则,确保数据的准确、一致和高效使用。应用架构方面,提出了分层解耦和服务化的设计原则,以提高灵活性和响应速度。最后,技术架构部分围绕技术框架、组件、平台和部署节点进行了详细设计,确保技术架构的稳定性和扩展性。 适合人群:适用于具有一定企业架构设计经验的IT架构师、项目经理和业务分析师,特别是那些希望深入了解如何将企业架构设计与数字化转型相结合的专业人士。 使用场景及目标:①帮助企业和组织梳理业务流程,优化业务能力,实现战略目标;②指导数据管理和应用开发,确保数据的一致性和应用的高效性;③为技术选型和系统部署提供科学依据,确保技术架构的稳定性和扩展性。 阅读建议:此资源内容详尽,涵盖企业架构设计的各个方面。建议读者在学习过程中,结合实际案例进行理解和实践,重点关注各架构模块之间的关联和协同,以便更好地应用于实际工作中。
资 源 简 介 独立分量分析(Independent Component Analysis,简称ICA)是近二十年来逐渐发展起来的一种盲信号分离方法。它是一种统计方法,其目的是从由传感器收集到的混合信号中分离相互独立的源信号,使得这些分离出来的源信号之间尽可能独立。它在语音识别、电信和医学信号处理等信号处理方面有着广泛的应用,目前已成为盲信号处理,人工神经网络等研究领域中的一个研究热点。本文简要的阐述了ICA的发展、应用和现状,详细地论述了ICA的原理及实现过程,系统地介绍了目前几种主要ICA算法以及它们之间的内在联系, 详 情 说 明 独立分量分析(Independent Component Analysis,简称ICA)是近二十年来逐渐发展起来的一种盲信号分离方法。它是一种统计方法,其目的是从由传感器收集到的混合信号中分离相互独立的源信号,使得这些分离出来的源信号之间尽可能独立。它在语音识别、电信和医学信号处理等信号处理方面有着广泛的应用,目前已成为盲信号处理,人工神经网络等研究领域中的一个研究热点。 本文简要的阐述了ICA的发展、应用和现状,详细地论述了ICA的原理及实现过程,系统地介绍了目前几种主要ICA算法以及它们之间的内在联系,在此基础上重点分析了一种快速ICA实现算法一FastICA。物质的非线性荧光谱信号可以看成是由多个相互独立的源信号组合成的混合信号,而这些独立的源信号可以看成是光谱的特征信号。为了更好的了解光谱信号的特征,本文利用独立分量分析的思想和方法,提出了利用FastICA算法提取光谱信号的特征的方案,并进行了详细的仿真实验。 此外,我们还进行了进一步的研究,探索了其他可能的ICA应用领域,如音乐信号处理、图像处理以及金融数据分析等。通过在这些领域中的实验和应用,我们发现ICA在提取信号特征、降噪和信号分离等方面具有广泛的潜力和应用前景。
#include <bits/stdc++.h> using namespace std; typedef long long ll; #define rep(i,s,t) for(register ll i = s;i <= t;++i) #define per(i,t,s) for(register ll i = t;i >= s;--i) const ll N = 1e6 + 5; ll n; ll k; ll rt1; ll rt2; ll top; ll idx; ll ans; ll p[N] = {}; ll q[N] = {}; ll fa[N] = {}; ll st[N] = {}; ll sz[N] = {}; ll siz[N] = {}; ll dfn[N] = {}; ll son[N] = {}; vector<ll> g[N]; vector<ll> g1[N]; vector<ll> g2[N]; class binary_indexed_tree { private: ll t[N] = {}; public: inline void init() { memset(t,0,sizeof(t)); } inline ll lowbit(ll x) { return x & (-x); } inline void upd(ll x,ll k) { while(x <= n) { t[x] += k; x += lowbit(x); } } inline ll qry(ll x) { ll ans = 0; while(x) { ans += t[x]; x -= lowbit(x); } return ans; } }; binary_indexed_tree t1; binary_indexed_tree t2; inline ll read() { ll x = 0; ll y = 1; char c = getchar(); while(c < '0' || c > '9') { if(c == '-') y = -y; c = getchar(); } while(c >= '0' && c <= '9') { x = (x << 3) + (x << 1) + (c ^ '0'); c = getchar(); } return x * y; } inline void write(ll x) { if(x < 0) { putchar('-'); write(-x); return; } if(x > 9) write(x / 10); putchar(x % 10 + '0'); } inline void dfs(ll u) { siz[u] = 1; dfn[u] = ++idx; for(register auto v : g1[u]) { dfs(v); siz[u] += siz[v]; } } inline void dfs1(ll u) { st[++top] = u; g[u].clear(); if(top > k) fa[u] = st[top - k]; else fa[u] = 0; if(fa[u]) g[fa[u]].push_back(u); sz[u] = 1; son[u] = 0; for(auto v : g2[u]) { dfs1(v); if(sz[v] > sz[son[u]]) son[u] = v; sz[u] += sz[v]; } top--; } inline void ins(ll x,ll k) { t1.upd(dfn[x],k); t1.upd(dfn[x] + siz[x],-k); t2.upd(dfn[x],k); } inline ll query(ll x) { return t1.qry(dfn[x]) + t2.qry(dfn[x] + siz[x] - 1) - t2.qry(dfn[x] - 1); } inline void dfs3(ll u,ll k) { for(auto v : g[u]) { if(k == 1) ans += query(v); else if(k == 2) ins(v,1); else if(k == 3) ins(v,-1); } for(auto v : g2[u]) dfs3(v,k); } inline void dfs2(ll u,ll k) // k is keep flag { for(auto v: g2[u]) if(v != son[u]) dfs2(v,0); if(son[u]) dfs2(son[u],1); for(auto v: g2[u]) if(v != son[u]) { dfs3(v,1); dfs3(v,2); } for(register auto v : g[u]) ins(v,1); if(!k) dfs3(u,3); } // 添加重置全局状态的函数 inline void reset_global() { // 重置 DFS 相关全局状态 top = 0; idx = 0; // 重置树状数组在 cal 逻辑中处理,不在此重置 // 重置 DSU 相关数组 memset(sz, 0, sizeof(sz)); memset(son, 0, sizeof(son)); memset(fa, 0, sizeof(fa)); memset(st, 0, sizeof(st)); // g 数组在 dfs1 中每个节点清空,无需全局重置 } // 封装 cal 函数,与第一段代码一致 inline void cal() { reset_global(); // 重置全局状态 dfs(rt1); // 在 T1 上 DFS t1.init(); // 清空树状数组 t2.init(); top = 0; dfs1(rt2); // 在 T2 上处理第 k 祖先 dfs2(rt2, 0); // DSU on tree } int main() { freopen("D.in","r",stdin); freopen("D.out","w",stdout); n = read(); k = read(); rep(i,1,n) p[i] = read(); rep(i,1,n) q[i] = read(); rep(i,1,n) { if(!p[i]) rt1 = i; else g1[p[i]].push_back(i); if(!q[i]) rt2 = i; else g2[q[i]].push_back(i); } // 第一次计算 cal(); // 交换树 rep(i,1,n) { swap(p[i],q[i]); swap(g1[i],g2[i]); } swap(rt1,rt2); // 第二次计算 cal(); write(ans); fclose(stdin); fclose(stdout); return 0; }小丁的树 题目描述 小丁拥有两棵均具有 n n 个顶点,编号集合为 { 1 , 2 , ⋯   , n } {1,2,⋯,n} 的有根树 T 1 , T 2 T 1 ​ ,T 2 ​ ,现在他需要计算这两棵树的相似程度。 为了计算,小丁定义了对于一棵树 T T 和 T T 上两个不同顶点 u , v u,v 的距离函数 d T ( u , v ) d T ​ (u,v),其定义为 u , v u,v 两个点距离成为祖先关系有多近,具体来说,对于所有在 T T 上为祖先关系的点对 ( u ′ , v ′ ) (u ′ ,v ′ ), dis ⁡ ( u , u ′ ) + dis ⁡ ( v , v ′ ) dis(u,u ′ )+dis(v,v ′ ) 的最小值即为 d T ( u , v ) d T ​ (u,v) 的值,其中 dis ⁡ ( u , v ) dis(u,v) 表示 u , v u,v 在树 T T 上的唯一简单路径包含的边数,即 u , v u,v 的距离。 点对 ( u ′ , v ′ ) (u ′ ,v ′ ) 为祖先关系,当且仅当 u ′ u ′ 是 v ′ v ′ 的祖先或 v ′ v ′ 是 u ′ u ′ 的祖先。(注意,每个点都是自己的祖先) 小丁心里还有一个参数 k k,如果节点对 ( u , v ) (u,v) 满足以下条件,称之为不相似的节点对: 1 ≤ u < v ≤ n 1≤u<v≤n " d T 1 ( u , v ) = 0 d T 1 ​ ​ (u,v)=0 且 d T 2 ( u , v ) > k d T 2 ​ ​ (u,v)>k“ 或 " d T 2 ( u , v ) = 0 d T 2 ​ ​ (u,v)=0 且 d T 1 ( u , v ) > k d T 1 ​ ​ (u,v)>k​“ 小丁认为,不相似的节点对越多, T 1 T 1 ​ 和 T 2 T 2 ​ 就越不相似,你能告诉他总共有多少不相似的节点对吗? 输入格式 第一行两个整数 n , k n,k,表示 T 1 T 1 ​ 和 T 2 T 2 ​ 的节点数和参数 k k。 第二行 n n 个正整数 p 1 , p 2 , ⋯   , p n p 1 ​ ,p 2 ​ ,⋯,p n ​ , T 1 T 1 ​ 中节点 i i 的父节点为 p i p i ​ ,特别的,若 p i = 0 p i ​ =0,则 i i 是 T 1 T 1 ​ 的根。 第三行 n n 个正整数 q 1 , q 2 , ⋯   , q n q 1 ​ ,q 2 ​ ,⋯,q n ​ , T 2 T 2 ​ 中节点 i i 的父节点为 q i q i ​ ,特别的,若 q i = 0 q i ​ =0,则 i i 是 T 2 T 2 ​ 的根。 输出格式 一行一个整数,表示不相似的节点对总数。 样例 1 输入 5 0 0 1 1 2 3 5 3 1 1 0 样例 1 输出 4 样例 1 解释 ( 2 , 3 ) , ( 2 , 4 ) , ( 2 , 5 ) , ( 4 , 5 ) (2,3),(2,4),(2,5),(4,5) 为不相似的节点对。 其余样例见下发文件。 数据规模与约定 对于所有数据, 1 ≤ n ≤ 2 × 10 5 , 0 ≤ k < n , 0 ≤ p i , q i ≤ n 1≤n≤2×10 5 ,0≤k<n,0≤p i ​ ,q i ​ ≤n,且由 p i , q i p i ​ ,q i ​ 形成的是一棵 n n 个节点的有根树。 本题采用捆绑评测,你只有通过了一个子任务中所有测试点才能得到该子任务的分数。 Subtask 1(10pts): 1 ≤ n ≤ 100 1≤n≤100。 Subtask 2(20pts): 1 ≤ n ≤ 3000 1≤n≤3000。 Subtask 3(20pts): k = 0 k=0。 Subtask 4(10pts): 0 ≤ k ≤ 20 0≤k≤20。 Subtask 5(40pts):无特殊限制。 请详细注释上述代码的每一行,给出详细的解题思路,并完整按照代码流程模拟样例
07-25
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值