DataFrame读取CSV文件

本文介绍了使用Python的Pandas库来读取不同格式的CSV文件的方法,包括使用不同的分隔符、设置特定行作为表头、指定列名、设置索引列、跳过某些行及处理缺失值等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 读取csv的代码:

print pd.read_csv("ex1.csv")

print "\n"
print "Can also use read table with a specific separator"
print pd.read_table("ex1.csv",sep=',')

print "\n"
print "Read a csv and define a row as its header"
print pd.read_csv("ex2.csv",header=None)
print "###"
print pd.read_csv("ex2.csv",header=1)


print "\n"
print 'Set names for the columns'
name=['wang','li','zhao','qian','sun']
print pd.read_csv('ex2.csv',names=name)

print "\n"
print 'Set names for the columns and user a column as the index'
print pd.read_csv('ex2.csv',names=name,index_col='sun')

 

读取不规则csv到pandas

b = list(open('ex3.txt'))
print b
print 'User regex to split, s represents space,tap,new line, and so forth'
result = pd.read_table('ex3.txt',sep="\s+")
print result

print '\n'
print 'Skip rows from reading'
result1 = pd.read_table('ex3.txt',sep="\s+",skiprows=[1,3])
print result1

print '\n'
print 'We found some NaN somewhere'
csv5 = pd.read_csv('ex5.csv')
print csv5
print pd.isnull(csv5)

print '\n'
print "We treat 'foo' as a NaN"
csv5_fill = pd.read_csv('ex5.csv',na_values=["foo"])
print csv5_fill 

 

转载于:https://www.cnblogs.com/rhyswang/p/8327574.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值