关于Java集合的小抄

在尽可能短的篇幅里,将所有集合与并发集合的特征、实现方式、性能捋一遍。适合所有"精通Java",其实还不那么自信的人阅读。

期望能不止用于面试时,平时选择数据结构,也能考虑一下其成本与效率,不要看着API合适就用了。

1.List

1.1 ArrayList

以数组实现。节约空间,但数组有容量限制。超出限制时会增加50%容量,用System.arraycopy()复制到新的数组。因此最好能给出数组大小的预估值。默认第一次插入元素时创建大小为10的数组。

按数组下标访问元素-get(i)、set(i,e) 的性能很高,这是数组的基本优势。

如果按下标插入元素、删除元素-add(i,e)、 remove(i)、remove(e),则要用System.arraycopy()来复制移动部分受影响的元素,性能就变差了。

越是前面的元素,修改时要移动的元素越多。直接在数组末尾加入元素-常用的add(e),删除最后一个元素则无影响。

1.2 LinkedList

以双向链表实现。链表无容量限制,但双向链表本身使用了更多空间,每插入一个元素都要构造一个额外的Node对象,也需要额外的链表指针操作。

按下标访问元素-get(i)、set(i,e) 要悲剧的部分遍历链表将指针移动到位 (如果i>数组大小的一半,会从末尾移起)。

插入、删除元素时修改前后节点的指针即可,不再需要复制移动。但还是要部分遍历链表的指针才能移动到下标所指的位置。

只有在链表两头的操作-add()、addFirst()、removeLast()或用iterator()上的remove()倒能省掉指针的移动。

Apache Commons 有个TreeNodeList,里面是棵二叉树,可以快速移动指针到位。

 

1.3 CopyOnWriteArrayList

并发优化的ArrayList。基于不可变对象策略,在修改时先复制出一个数组快照来修改,改好了,再让内部指针指向新数组。

因为对快照的修改对读操作来说不可见,所以读读之间不互斥,读写之间也不互斥,只有写写之间要加锁互斥。但复制快照的成本昂贵,典型的适合读多写少的场景。

虽然增加了addIfAbsent(e)方法,会遍历数组来检查元素是否已存在,性能可想像的不会太好。

 

1.4 遗憾

无论哪种实现,按值返回下标contains(e), indexOf(e), remove(e) 都需遍历所有元素进行比较,性能可想像的不会太好。

没有按元素值排序的SortedList。

除了CopyOnWriteArrayList,再没有其他线程安全又并发优化的实现如ConcurrentLinkedList。凑合着用Set与Queue中的等价类时,会缺少一些List特有的方法如get(i)。如果更新频率较高,或数组较大时,还是得用Collections.synchronizedList(list),对所有操作用同一把锁来保证线程安全。


2.Map

2.1 HashMap

 

以Entry[]数组实现的哈希桶数组,用Key的哈希值取模桶数组的大小可得到数组下标。

插入元素时,如果两条Key落在同一个桶(比如哈希值1和17取模16后都属于第一个哈希桶),我们称之为哈希冲突。

JDK的做法是链表法,Entry用一个next属性实现多个Entry以单向链表存放。查找哈希值为17的key时,先定位到哈希桶,然后链表遍历桶里所有元素,逐个比较其Hash值然后key值。

在JDK8里,新增默认为8的阈值,当一个桶里的Entry超过閥值,就不以单向链表而以红黑树来存放以加快Key的查找速度。

当然,最好还是桶里只有一个元素,不用去比较。所以默认当Entry数量达到桶数量的75%时,哈希冲突已比较严重,就会成倍扩容桶数组,并重新分配所有原来的Entry。扩容成本不低,所以也最好有个预估值。

取模用与操作(hash & (arrayLength-1))会比较快,所以数组的大小永远是2的N次方, 你随便给一个初始值比如17会转为32。默认第一次放入元素时的初始值是16。

iterator()时顺着哈希桶数组来遍历,看起来是个乱序。

 

2.2 LinkedHashMap

扩展HashMap,每个Entry增加双向链表,号称是最占内存的数据结构。

支持iterator()时按Entry的插入顺序来排序(如果设置accessOrder属性为true,则所有读写访问都排序)。

插入时,Entry把自己加到Header Entry的前面去。如果所有读写访问都要排序,还要把前后Entry的before/after拼接起来以在链表中删除掉自己,所以此时读操作也是线程不安全的了。

 

2.3 TreeMap

以红黑树实现,红黑树又叫自平衡二叉树:

对于任一节点而言,其到叶节点的每一条路径都包含相同数目的黑结点。

上面的规定,使得树的层数不会差的太远,使得所有操作的复杂度不超过 O(lgn),但也使得插入,修改时要复杂的左旋右旋来保持树的平衡。

支持iterator()时按Key值排序,可按实现了Comparable接口的Key的升序排序,或由传入的Comparator控制。可想象的,在树上插入/删除元素的代价一定比HashMap的大。

支持SortedMap接口,如firstKey(),lastKey()取得最大最小的key,或sub(fromKey, toKey), tailMap(fromKey)剪取Map的某一段。

 

2.4 EnumMap

EnumMap的原理是,在构造函数里要传入枚举类,那它就构建一个与枚举的所有值等大的数组,按Enum. ordinal()下标来访问数组。性能与内存占用俱佳。

美中不足的是,因为要实现Map接口,而 V get(Object key)中key是Object而不是泛型K,所以安全起见,EnumMap每次访问都要先对Key进行类型判断,在JMC里录得不低的采样命中频率。

 

2.5 ConcurrentHashMap

并发优化的HashMap。

在JDK5里的经典设计,默认16把写锁(可以设置更多),有效分散了阻塞的概率。数据结构为Segment[],每个Segment一把锁。Segment里面才是哈希桶数组。Key先算出它在哪个Segment里,再去算它在哪个哈希桶里。

也没有读锁,因为put/remove动作是个原子动作(比如put的整个过程是一个对数组元素/Entry 指针的赋值操作),读操作不会看到一个更新动作的中间状态。

但在JDK8里,Segment[]的设计被抛弃了,改为精心设计的,只在需要锁的时候加锁。

支持ConcurrentMap接口,如putIfAbsent(key,value)与相反的replace(key,value)与以及实现CAS的replace(key, oldValue, newValue)。

 

2.6 ConcurrentSkipListMap

JDK6新增的并发优化的SortedMap,以SkipList结构实现。Concurrent包选用它是因为它支持基于CAS的无锁算法,而红黑树则没有好的无锁算法。

原理上,可以想象为多个链表组成的N层楼,其中的元素从稀疏到密集,每个元素有往右与往下的指针。从第一层楼开始遍历,如果右端的值比期望的大,那就往下走一层,继续往前走。

 

典型的空间换时间。每次插入,都要决定在哪几层插入,同时,要决定要不要多盖一层楼。

它的size()同样不能随便调,会遍历来统计。

 


3.Set

 

所有Set几乎都是内部用一个Map来实现, 因为Map里的KeySet就是一个Set,而value是假值,全部使用同一个Object即可。

Set的特征也继承了那些内部的Map实现的特征。

HashSet:内部是HashMap。

LinkedHashSet:内部是LinkedHashMap。

TreeSet:内部是TreeMap的SortedSet。

ConcurrentSkipListSet:内部是ConcurrentSkipListMap的并发优化的SortedSet。

CopyOnWriteArraySet:内部是CopyOnWriteArrayList的并发优化的Set,利用其addIfAbsent()方法实现元素去重,如前所述该方法的性能很一般。

好像少了个ConcurrentHashSet,本来也该有一个内部用ConcurrentHashMap的简单实现,但JDK偏偏没提供。Jetty就自己简单封了一个,Guava则直接用java.util.Collections.newSetFromMap(new ConcurrentHashMap()) 实现。

 


 

4.Queue

Queue是在两端出入的List,所以也可以用数组或链表来实现。

4.1 普通队列

4.1.1 LinkedList

是的,以双向链表实现的LinkedList既是List,也是Queue。

4.1.2 ArrayDeque

以循环数组实现的双向Queue。大小是2的倍数,默认是16。

为了支持FIFO,即从数组尾压入元素(快),从数组头取出元素(超慢),就不能再使用普通ArrayList的实现了,改为使用循环数组。

有队头队尾两个下标:弹出元素时,队头下标递增;加入元素时,队尾下标递增。如果加入元素时已到数组空间的末尾,则将元素赋值到数组[0],同时队尾下标指向0,再插入下一个元素则赋值到数组[1],队尾下标指向1。如果队尾的下标追上队头,说明数组所有空间已用完,进行双倍的数组扩容。

4.1.3 PriorityQueue

用平衡二叉最小堆实现的优先级队列,不再是FIFO,而是按元素实现的Comparable接口或传入Comparator的比较结果来出队,数值越小,优先级越高,越先出队。但是注意其iterator()的返回不会排序。

平衡最小二叉堆,用一个简单的数组即可表达,可以快速寻址,没有指针什么的。最小的在queue[0] ,比如queue[4]的两个孩子,会在queue[2*4+1] 和 queue[2*(4+1)],即queue[9]和queue[10]。

入队时,插入queue[size],然后二叉地往上比较调整堆。

出队时,弹出queue[0],然后把queque[size]拿出来二叉地往下比较调整堆。

初始大小为11,空间不够时自动50%扩容。

 

4.2 线程安全的队列

4.2.1 ConcurrentLinkedQueue/Deque

无界的并发优化的Queue,基于链表,实现了依赖于CAS的无锁算法。

ConcurrentLinkedQueue的结构是单向链表和head/tail两个指针,因为入队时需要修改队尾元素的next指针,以及修改tail指向新入队的元素两个CAS动作无法原子,所以需要的特殊的算法。

4.3 线程安全的阻塞队列

BlockingQueue,一来如果队列已空不用重复的查看是否有新数据而会阻塞在那里,二来队列的长度受限,用以保证生产者与消费者的速度不会相差太远。当入队时队列已满,或出队时队列已空,不同函数的效果见下表:

 立刻报异常立刻返回布尔阻塞等待可设定等待时间
入队add(e)offer(e)put(e)offer(e, timeout, unit)
出队remove()poll()take()poll(timeout, unit)
查看element()peek()

 

4.3.1 ArrayBlockingQueue

定长的并发优化的BlockingQueue,也是基于循环数组实现。有一把公共的锁与notFull、notEmpty两个Condition管理队列满或空时的阻塞状态。

4.3.2 LinkedBlockingQueue/Deque

可选定长的并发优化的BlockingQueue,基于链表实现,所以可以把长度设为Integer.MAX_VALUE成为无界无等待的。

利用链表的特征,分离了takeLock与putLock两把锁,继续用notEmpty、notFull管理队列满或空时的阻塞状态。

4.3.3 PriorityBlockingQueue

无界的PriorityQueue,也是基于数组存储的二叉堆(见前)。一把公共的锁实现线程安全。因为无界,空间不够时会自动扩容,所以入列时不会锁,出列为空时才会锁。

 

4.3.4 DelayQueue

内部包含一个PriorityQueue,同样是无界的,同样是出列时才会锁。一把公共的锁实现线程安全。元素需实现Delayed接口,每次调用时需返回当前离触发时间还有多久,小于0表示该触发了。

pull()时会用peek()查看队头的元素,检查是否到达触发时间。ScheduledThreadPoolExecutor用了类似的结构。

4.4 同步队列

SynchronousQueue同步队列本身无容量,放入元素时,比如等待元素被另一条线程的消费者取走再返回。JDK线程池里用它。

JDK7还有个LinkedTransferQueue,在普通线程安全的BlockingQueue的基础上,增加一个transfer(e) 函数,效果与SynchronousQueue一样。


 

5. 参考文档

  • 红黑树: https://github.com/julycoding/The-Art-Of-Programming-By-July/blob/master/ebook/zh/03.01.md
  • 跳表:http://blog.sina.com.cn/s/blog_72995dcc01017w1t.html
  • 二叉堆:http://blog.youkuaiyun.com/lcore/article/details/9100073
  • ConcurrentLinkedQueue:http://www.ibm.com/developerworks/cn/java/j-jtp04186/

原文来自 “春天的旁边”(jnby1978):http://calvin1978.blogcn.com/articles/collection.html

 

转载于:https://www.cnblogs.com/yuanye007/p/6248745.html

标题SpringBoot智能在线预约挂号系统研究AI更换标题第1章引言介绍智能在线预约挂号系统的研究背景、意义、国内外研究现状及论文创新点。1.1研究背景与意义阐述智能在线预约挂号系统对提升医疗服务效率的重要性。1.2国内外研究现状分析国内外智能在线预约挂号系统的研究与应用情况。1.3研究方法及创新点概述本文采用的技术路线、研究方法及主要创新点。第2章相关理论总结智能在线预约挂号系统相关理论,包括系统架构、开发技术等。2.1系统架构设计理论介绍系统架构设计的基本原则和常用方法。2.2SpringBoot开发框架理论阐述SpringBoot框架的特点、优势及其在系统开发中的应用。2.3数据库设计与管理理论介绍数据库设计原则、数据模型及数据库管理系统。2.4网络安全与数据保护理论讨论网络安全威胁、数据保护技术及其在系统中的应用。第3章SpringBoot智能在线预约挂号系统设计详细介绍系统的设计方案,包括功能模块划分、数据库设计等。3.1系统功能模块设计划分系统功能模块,如用户管理、挂号管理、医生排班等。3.2数据库设计与实现设计数据库表结构,确定字段类型、主键及外键关系。3.3用户界面设计设计用户友好的界面,提升用户体验。3.4系统安全设计阐述系统安全策略,包括用户认证、数据加密等。第4章系统实现与测试介绍系统的实现过程,包括编码、测试及优化等。4.1系统编码实现采用SpringBoot框架进行系统编码实现。4.2系统测试方法介绍系统测试的方法、步骤及测试用例设计。4.3系统性能测试与分析对系统进行性能测试,分析测试结果并提出优化建议。4.4系统优化与改进根据测试结果对系统进行优化和改进,提升系统性能。第5章研究结果呈现系统实现后的效果,包括功能实现、性能提升等。5.1系统功能实现效果展示系统各功能模块的实现效果,如挂号成功界面等。5.2系统性能提升效果对比优化前后的系统性能
在金融行业中,对信用风险的判断是核心环节之一,其结果对机构的信贷政策和风险控制策略有直接影响。本文将围绕如何借助机器学习方法,尤其是Sklearn工具包,建立用于判断信用状况的预测系统。文中将涵盖逻辑回归、支持向量机等常见方法,并通过实际操作流程进行说明。 一、机器学习基本概念 机器学习属于人工智能的子领域,其基本理念是通过数据自动学习规律,而非依赖人工设定规则。在信贷分析中,该技术可用于挖掘历史数据中的潜在规律,进而对未来的信用表现进行预测。 二、Sklearn工具包概述 Sklearn(Scikit-learn)是Python语言中广泛使用的机器学习模块,提供多种数据处理和建模功能。它简化了数据清洗、特征提取、模型构建、验证与优化等流程,是数据科学项目中的常用工具。 三、逻辑回归模型 逻辑回归是一种常用于分类任务的线性模型,特别适用于二类问题。在信用评估中,该模型可用于判断借款人是否可能违约。其通过逻辑函数将输出映射为0到1之间的概率值,从而表示违约的可能性。 四、支持向量机模型 支持向量机是一种用于监督学习的算法,适用于数据维度高、样本量小的情况。在信用分析中,该方法能够通过寻找最佳分割面,区分违约与非违约客户。通过选用不同核函数,可应对复杂的非线性关系,提升预测精度。 五、数据预处理步骤 在建模前,需对原始数据进行清理与转换,包括处理缺失值、识别异常点、标准化数值、筛选有效特征等。对于信用评分,常见的输入变量包括收入水平、负债比例、信用历史记录、职业稳定性等。预处理有助于减少噪声干扰,增强模型的适应性。 六、模型构建与验证 借助Sklearn,可以将数据集划分为训练集和测试集,并通过交叉验证调整参数以提升模型性能。常用评估指标包括准确率、召回率、F1值以及AUC-ROC曲线。在处理不平衡数据时,更应关注模型的召回率与特异性。 七、集成学习方法 为提升模型预测能力,可采用集成策略,如结合多个模型的预测结果。这有助于降低单一模型的偏差与方差,增强整体预测的稳定性与准确性。 综上,基于机器学习的信用评估系统可通过Sklearn中的多种算法,结合合理的数据处理与模型优化,实现对借款人信用状况的精准判断。在实际应用中,需持续调整模型以适应市场变化,保障预测结果的长期有效性。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值