论文笔记3

OFDM同步技术

Optical OFDM Synchronization With Symbol Timing Offset and Sampling Clock Offset Compensation in Real-Time IMDD Systems

X. Q. Jin and J. M. Tang

accepted February 22, 2011, Published in IEEE Photonics Journal, School of Electrical Engineering, Bangor University, Bangor LL57 1UT U.K.

        在无线领域,由于信道的不稳定性,每个几个符号就需要发送训练序列;那么在比较稳定的光通信领域,就不太需要频繁地同步,可以不发送训练序列。本文提出用CP来做Symbol Timing Offset(SCO)和Sampling Clock Offset(STO),并且用减法替代了乘法运算(相关运算)。首次在end-to-end实时系统中实现 STO和SCO的同时补偿,系统参数为:11.25Gb/s, 64QAM, 25km IMDD SMF

        本文认为无线OFDM系统中,传统基于CP的同步需要用到最大似然估计,此外还有复数乘法和反正切的计算,这些都会大大增加DSP的复杂度。以后,商业DSP单元的速度会远小于ADC的采样速度,那么此时并行处理就显得尤为重要(>10Gb/s)。显然,并行处理会需要更多的加法器和乘法器,这时,传统的基于CP的同步技术就不适合end-to-end、real-time、high-speed OOFDM系统了。(这里我觉得,由于无线速率较低的缘故,用一些复杂的DSP算法还看不出弊端;当在OOFDM系统中,由于较高的速率,会使得DSP的速度成为瓶颈,那么就需要优化DSP算法)

        STO和SCO的实现都需要依靠synchronization profile vector(SPV),下面就来讲讲SPV的由来

        从ADC中读取L个数,L指一个符号的长度,再从L中复制N个数据粘贴到L的后面,形成(L+N)的数据,在这边文献里,L=40,CP=8,N=32=2^5.

        X(i)可看成是相关运算的结果,Y(i)=αX(i)+(1-α)Y(i-1),其中Y(n)就为SPV,系数为α;i落在CP外时,Y(i)是一个随机数;i落在CP内时,X(i)应该等于0,但由于随机噪声的问题,不会完全等于0;为了减缓这种随机噪声的影响,引入成长系数α,控制Y(n)的增长。然后经过一个减法之后,在CP区域内会出现一个峰值,为了突出这个峰值,抑制其他地方的噪声,需要经过一个高斯窗,然后可求得峰值的中心值(COG),COG可能为小数。如果采样钟同步上的话,那么在每次取样的40个点内,CP出现的地方都应该是一样的,即COG所在的位置是不变的,根据这一点,我们可以得到采样钟的偏移,以便去控制VCO。偏移量可由(P2-P1)/M求得,P2、P1是两次不同时刻COG的位置,M是两次时刻的间隔。SCO为0时,偏移量也应该为0.当我们找到COG,取出COG的整数部分。以此为起点取出后面的N点作为FFT的数据。

        文中还讨论了系数α的影响:取值α时,我们应该在跟踪速度和COG精度之间平衡,α越大跟踪速度越快,能修正的频偏范围越大,但某一个随机噪声点对COG的影响也大,不利于COG的稳定。经过权衡本文选取了α=2E-3,2E-n 数据的选取也是考虑到FPGA硬件运算的快速性。


        文章最后还比较了该算法和其他两种算法在硬件实现上的复杂度,一个是基于CP的同步[11]-[13],另一个是基于训练序列的同步[9]。可以看出该算法乘加运算最少,且不需要反正切函数运算;其中最复杂的是基于CP的同步,由于其运用了最大似然估计,需要用到log函数。



转载于:https://www.cnblogs.com/season-peng/p/6713539.html

标题SpringBoot智能在线预约挂号系统研究AI更换标题第1章引言介绍智能在线预约挂号系统的研究背景、意义、国内外研究现状及论文创新点。1.1研究背景与意义阐述智能在线预约挂号系统对提升医疗服务效率的重要性。1.2国内外研究现状分析国内外智能在线预约挂号系统的研究与应用情况。1.3研究方法及创新点概述本文采用的技术路线、研究方法及主要创新点。第2章相关理论总结智能在线预约挂号系统相关理论,包括系统架构、开发技术等。2.1系统架构设计理论介绍系统架构设计的基本原则和常用方法。2.2SpringBoot开发框架理论阐述SpringBoot框架的特点、优势及其在系统开发中的应用。2.3数据库设计与管理理论介绍数据库设计原则、数据模型及数据库管理系统。2.4网络安全与数据保护理论讨论网络安全威胁、数据保护技术及其在系统中的应用。第3章SpringBoot智能在线预约挂号系统设计详细介绍系统的设计方案,包括功能模块划分、数据库设计等。3.1系统功能模块设计划分系统功能模块,如用户管理、挂号管理、医生排班等。3.2数据库设计与实现设计数据库表结构,确定字段类型、主键及外键关系。3.3用户界面设计设计用户友好的界面,提升用户体验。3.4系统安全设计阐述系统安全策略,包括用户认证、数据加密等。第4章系统实现与测试介绍系统的实现过程,包括编码、测试及优化等。4.1系统编码实现采用SpringBoot框架进行系统编码实现。4.2系统测试方法介绍系统测试的方法、步骤及测试用例设计。4.3系统性能测试与分析对系统进行性能测试,分析测试结果并提出优化建议。4.4系统优化与改进根据测试结果对系统进行优化和改进,提升系统性能。第5章研究结果呈现系统实现后的效果,包括功能实现、性能提升等。5.1系统功能实现效果展示系统各功能模块的实现效果,如挂号成功界面等。5.2系统性能提升效果对比优化前后的系统性能
在金融行业中,对信用风险的判断是核心环节之一,其结果对机构的信贷政策和风险控制策略有直接影响。本文将围绕如何借助机器学习方法,尤其是Sklearn工具包,建立用于判断信用状况的预测系统。文中将涵盖逻辑回归、支持向量机等常见方法,并通过实际操作流程进行说明。 一、机器学习基本概念 机器学习属于人工智能的子领域,其基本理念是通过数据自动学习规律,而非依赖人工设定规则。在信贷分析中,该技术可用于挖掘历史数据中的潜在规律,进而对未来的信用表现进行预测。 二、Sklearn工具包概述 Sklearn(Scikit-learn)是Python语言中广泛使用的机器学习模块,提供多种数据处理和建模功能。它简化了数据清洗、特征提取、模型构建、验证与优化等流程,是数据科学项目中的常用工具。 三、逻辑回归模型 逻辑回归是一种常用于分类任务的线性模型,特别适用于二类问题。在信用评估中,该模型可用于判断借款人是否可能违约。其通过逻辑函数将输出映射为0到1之间的概率值,从而表示违约的可能性。 四、支持向量机模型 支持向量机是一种用于监督学习的算法,适用于数据维度高、样本量小的情况。在信用分析中,该方法能够通过寻找最佳分割面,区分违约与非违约客户。通过选用不同核函数,可应对复杂的非线性关系,提升预测精度。 五、数据预处理步骤 在建模前,需对原始数据进行清理与转换,包括处理缺失值、识别异常点、标准化数值、筛选有效特征等。对于信用评分,常见的输入变量包括收入水平、负债比例、信用历史记录、职业稳定性等。预处理有助于减少噪声干扰,增强模型的适应性。 六、模型构建与验证 借助Sklearn,可以将数据集划分为训练集和测试集,并通过交叉验证调整参数以提升模型性能。常用评估指标包括准确率、召回率、F1值以及AUC-ROC曲线。在处理不平衡数据时,更应关注模型的召回率与特异性。 七、集成学习方法 为提升模型预测能力,可采用集成策略,如结合多个模型的预测结果。这有助于降低单一模型的偏差与方差,增强整体预测的稳定性与准确性。 综上,基于机器学习的信用评估系统可通过Sklearn中的多种算法,结合合理的数据处理与模型优化,实现对借款人信用状况的精准判断。在实际应用中,需持续调整模型以适应市场变化,保障预测结果的长期有效性。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值