nefu696 Dart game(dp背包)

本文探讨了Dart游戏的计分规则及其多种得分方式,通过实例分析和算法实现,详细介绍了如何通过不同的组合策略达到零分的目标,并提供了解决方案及代码实现。

Dart game

Time Limit 1000ms

Memory Limit 65536K

description

   Darts originated in Australia. Australia's aborigines initially for hunting and hit the enemy's weapon. 
   A game of darts in which the players attempt to score points by throwing the darts at a target.
Figure:DART BOARD
   Darts movement rules of the game is very simple, the target is 1-20 points and the central circle is 50 small zoning, edge is 25 division, the rough circle line of fan-shaped covered area is 1-20 points and three times the corresponding division. This game is generally played by two people but can be played by teams. Each player starts with N points. The goal for each player is to reach zero by subtracting the amount they score from the amount they had left,but final throwing must be double division. And the first to reduce his/her score to zero wins.
   So the task is : 
   Given a dart scores N that a player starts with, you are required to calculate how many different ways to reach zero. One is different way to another means at least one dart hits different division.Ways which have different orders and same divisions are the same way. For example,if N=4,there are 4 different ways reach to zero:the first is double 2,the second is 2 and double 1, the third is twice of double 1,the fourth is twice of 1 and double 1 .
   The answer may be very large,you have to module it by 2011. 
							

input

The input contains several test cases.
   Each test case contains an integer N ( 0 < N ≤ 1001 ) in a line.
   N=0 means end of input and need not to process.
							

output

For each test case, output how many different ways to reach zero.
							

sample_input

5
4
3
2
1
0
							

sample_output

6
4
1
1
0
							

hint

  5=1+1×2+1×2
  5=1+1+1+1×2
  5=3+1×2
  5=1×3+1×2
  5=1+2+1×2
  5=1+2×2
  4=2×2
  4=1+1+1×2
  4=2+1×2
  4=1×2+1×2
  3=1+1×2
  2=1×2
  1:no way
								
							

source


题目数据有问题!!!!

思路:先对1倍和三倍的进行背包处理,dd[],再对二倍的进行背包处理dp[]

         去除二倍不取的情况,dp[0]=0;然后结果就是二倍有,其他任意取,las[i+j]=dp[i]*dp[j]

注意一倍有25,二倍有50

#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
const int mm=1e3+9;
const int mod=2011;
int dp[mm],dd[mm];
int las[mm];
int main()
{
  memset(dp,0,sizeof(dp));
  memset(dd,0,sizeof(dd));
  memset(las,0,sizeof(las));
  int z;
  dd[0]=1;
  for(int i=1;i<=20;++i)///一倍,三倍背包
  {
    for(int j=0;j<2;++j)
    {
      if(j)z=3*i;
      else z=i;
      for(int k=z;k<mm;++k)
       if(dd[k-z])
      {dd[k]+=dd[k-z];
       dd[k]%=mod;
      }
    }
  }
  z=25;
  for(int k=z;k<mm;++k)
       if(dd[k-z])
      {dd[k]+=dd[k-z];
       dd[k]%=mod;
      }
  dp[0]=1;
  for(int i=1;i<=20;++i)///二倍背包
  {
    for(int j=i*2;j<mm;++j)
      if(dp[j-i*2])
      {dp[j]+=dp[j-i*2];
       dp[j]%=mod;
      }
  }
  for(int j=50;j<mm;++j)
      if(dp[j-50])
      {dp[j]+=dp[j-50];
       dp[j]%=mod;
      }
///底下的问题
  dp[0]=0;///去除二倍不取的情况
  int zz=mm-1;
  for(int i=0;i<mm;++i)
    for(int j=0;j<mm;++j)
   if(i+j<mm)
  {
    las[i+j]+=dp[i]*dd[j];
    las[i+j]%=mod;
  }
  int n;
  while(~scanf("%d",&n)&&n)
  {
    printf("%d\n",las[n]);

  }
}





转载于:https://www.cnblogs.com/nealgavin/archive/2013/05/05/3206100.html

内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备一定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模与求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值