LeetCode题解

本文探讨了一个经典算法问题:计算从网格左上角到右下角的不同路径数量,机器人只能向下或向右移动。通过递归方法解决,并优化避免重复计算,显著提高效率。
题目是这样的:
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。
问总共有多少条不同的路径?
 
 

例如:

输入: m = 3, n = 2
输出: 3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
1. 向右 -> 向右 -> 向下
2. 向右 -> 向下 -> 向右
3. 向下 -> 向右 -> 向右
 
 
 
输入: m = 7, n = 3
输出: 28
 
 
  这道题其实跟那个踩阶梯的题很相似:“假如有10步台阶,一次可走一步或两步,那么要走到达台阶顶,有几种走法,我们都知道,这个是斐波那契问题,递归就可以了”。
  我们可以这么解,假设最后一格是a[m][n],那么能到达a[m][n]的只有a[m-1][n]和a[m][n-1]。同理,要到达a[m-1][n],也只能从a[m-1-1][n]和a[m-1][n-1];
要到达a[m][n-1],也只能从a[m-1][n-1]和a[m][n-1-1],这是个递归问题。直到a[i][j]中i=1或者j=1,当i=1时,就只可以能时从a[i][j-1]到达,当j=1时,同样,也只能从a[i-1][j]到达;
于是,递归的边界找到了。
  可能上面说的不直观,请看下面:

```
           r(m,3)的值       r(m,4)的值   r(m,4)-r(m-1,4)的差值

            r(1,3)=1         r(1,4)=1         3
            r(2,3)=3         r(2,4)=4         6 
            r(3,3)=6         r(3,4)=10       10
            r(4,3)=10        r(4,4)=20       15  
            r(5,3)=15        r(5,4)=35       21  
            r(6,3)=21        r(6,4)=56       28  
            r(7,3)=28        r(7,4)=84       36  
            r(8,3)=36        r(8,4)=120      45  
            r(9,3)=45        r(9,4)=165

        有没有发现
        r(9,4)=r(8,4)+45=r(8,4)+r(9,3)=r(7,4)+r(8,3)+r(8,3)+r(9,2)
        r(8,4)=r(7,4)+36=r(7,4)+r(8,3)=r(6,4)+r(7,3)+r(7,3)+r(8,2)
        .
        .
        .
        .
        .
```
于是我们很快想到了递归函数怎么写:
```
    public int uniquePaths2(int m, int n) {
        if (m == 1) {
        return 1;
        }
        if (n == 1) {
        return 1;
        }
        return uniquePaths2(m - 1, n) + uniquePaths2(m, n - 1);
    }
```

运行一下:

 

 


结果对了,现在把参数值变大一点:

 


时间还凑合,再变大,这次运行时间有点久了:

 


超过了两分钟!
为什么呢,请看上面的发现那里:在我们计算r(9,4)的时候是不是中间会计算两次r(8,3),并且r(8,4)和r(9,4)中间都会有r(7,4)的计算,而这些重复计算是很浪费时间的。对这块不了解的可以看这篇文章: https://mp.weixin.qq.com/s/llvtdxaPc29CNkcmtPHxKw
于是,为了避免重复计算,这个函数需要改写,我们可以这样,在计算r(8,3)的时候把r(8,3)的值保存起来,这样下次计算r(8,3)的值的时候可以直接获取,不需要再计算了,根据这个思路,把算法改良一下:
```
public int uniquePaths3(int m, int n) {
        int[][] all = new int[m][n];
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                if (i == 0 || j == 0) {
                    all[i][j] = 1;
                } else {
                    all[i][j] = all[i - 1][j] + all[i][j - 1];
                }
            }
        }
        return all[m - 1][n - 1];
}
```

再看看运行结果:

 


快了好多是不是!


转载于:https://www.cnblogs.com/aibaofeng/p/11098525.html

乐播投屏是一款简单好用、功能强大的专业投屏软件,支持手机投屏电视、手机投电脑、电脑投电视等多种投屏方式。 多端兼容与跨网投屏:支持手机、平板、电脑等多种设备之间的自由组合投屏,且无需连接 WiFi,通过跨屏技术打破网络限制,扫一扫即可投屏。 广泛的应用支持:支持 10000+APP 投屏,包括综合视频、网盘与浏览器、美韩剧、斗鱼、虎牙等直播平台,还能将央视、湖南卫视等各大卫视的直播内容一键投屏。 高清流畅投屏体验:腾讯独家智能音画调校技术,支持 4K 高清画质、240Hz 超高帧率,低延迟不卡顿,能为用户提供更高清、流畅的视觉享受。 会议办公功能强大:拥有全球唯一的 “超级投屏空间”,扫码即投,无需安装。支持多人共享投屏、远程协作批注,PPT、Excel、视频等文件都能流畅展示,还具备企业级安全加密,保障会议资料不泄露。 多人互动功能:支持多人投屏,邀请好友加入投屏互动,远程也可加入。同时具备一屏多显、语音互动功能,支持多人连麦,实时语音交流。 文件支持全面:支持 PPT、PDF、Word、Excel 等办公文件,以及视频、图片等多种类型文件的投屏,还支持网盘直投,无需下载和转格式。 特色功能丰富:投屏时可同步录制投屏画面,部分版本还支持通过触控屏或电视端外接鼠标反控电脑,以及在投屏过程中用画笔实时标注等功能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值