find python3_找不到cannot find -lpython3.5m caffe anaconda python3 ubuntu16.04

这篇博客主要记录了在Ubuntu16.04上安装Caffe时遇到的找不到-lpython3.5m库的问题。博主提到了可能需要设置CUDA_DIR、CUDA_ARCH、BLAS、PYTHON_INCLUDE和PYTHON_LIB等环境变量来解决这个问题,并且给出了配置文件的部分内容作为参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

## Refer to http://caffe.berkeleyvision.org/installation.html#Contributions simplifying and improving our build system are welcome!

#cuDNN acceleration switch (uncomment to build with cuDNN).#USE_CUDNN := 1

#CPU-only switch (uncomment to build without GPU support).

CPU_ONLY := 1

#uncomment to disable IO dependencies and corresponding data layers#USE_OPENCV := 0#USE_LEVELDB := 0#USE_LMDB := 0

#uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)#You should not set this flag if you will be reading LMDBs with any#possibility of simultaneous read and write#ALLOW_LMDB_NOLOCK := 1

#Uncomment if you‘re using OpenCV 3#OPENCV_VERSION := 3

#To customize your choice of compiler, uncomment and set the following.#N.B. the default for Linux is g++ and the default for OSX is clang++#CUSTOM_CXX := g++

#CUDA directory contains bin/ and lib/ directories that we need.

CUDA_DIR := /usr/local/cuda#On Ubuntu 14.04, if cuda tools are installed via#"sudo apt-get install nvidia-cuda-toolkit" then use this instead:#CUDA_DIR := /usr

#CUDA architecture setting: going with all of them.#For CUDA < 6.0, comment the *_50 through *_61 lines for compatibility.#For CUDA < 8.0, comment the *_60 and *_61 lines for compatibility.#For CUDA >= 9.0, comment the *_20 and *_21 lines for compatibility.

CUDA_ARCH := -gencode arch=compute_20,code=sm_20-gencode arch=compute_20,code=sm_21-gencode arch=compute_30,code=sm_30-gencode arch=compute_35,code=sm_35-gencode arch=compute_50,code=sm_50-gencode arch=compute_52,code=sm_52-gencode arch=compute_60,code=sm_60-gencode arch=compute_61,code=sm_61-gencode arch=compute_61,code=compute_61#BLAS choice:#atlas for ATLAS (default)#mkl for MKL#open for OpenBlas

BLAS :=atlas#Custom (MKL/ATLAS/OpenBLAS) include and lib directories.#Leave commented to accept the defaults for your choice of BLAS#(which should work)!#BLAS_INCLUDE := /path/to/your/blas#BLAS_LIB := /path/to/your/blas

#Homebrew puts openblas in a directory that is not on the standard search path#BLAS_INCLUDE := $(shell brew --prefix openblas)/include#BLAS_LIB := $(shell brew --prefix openblas)/lib

#This is required only if you will compile the matlab interface.#MATLAB directory should contain the mex binary in /bin.#MATLAB_DIR := /usr/local#MATLAB_DIR := /Applications/MATLAB_R2012b.app

#NOTE: this is required only if you will compile the python interface.#We need to be able to find Python.h and numpy/arrayobject.h.#PYTHON_INCLUDE := /usr/include/python3.5 \

/usr/lib/python3.5/dist-packages/numpy/core/include#Anaconda Python distribution is quite popular. Include path:#Verify anaconda location, sometimes it‘s in root.

ANACONDA_HOME := $(HOME)/anaconda3

PYTHON_INCLUDE := $(ANACONDA_HOME)/include $(ANACONDA_HOME)/include/python3.5$(ANACONDA_HOME)/lib/python3.5/site-packages/numpy/core/include#Uncomment to use Python 3 (default is Python 2)

#PYTHON_LIBRARIES := boost_python3 python3.5m

#PYTHON_INCLUDE := /usr/include/python3.5m \

#/usr/lib/python3.5/dist-packages/numpy/core/include

#We need to be able to find libpythonX.X.so or .dylib.#PYTHON_LIB := /usr/lib

PYTHON_LIB := $(ANACONDA_HOME)/lib#Homebrew installs numpy in a non standard path (keg only)#PYTHON_INCLUDE += $(dir $(shell python -c ‘import numpy.core; print(numpy.core.__file__)‘))/include#PYTHON_LIB += $(shell brew --prefix numpy)/lib

#Uncomment to support layers written in Python (will link against Python libs)

WITH_PYTHON_LAYER := 1

#Whatever else you find you need goes here.

INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include#INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial/

LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib#If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies#INCLUDE_DIRS += $(shell brew --prefix)/include#LIBRARY_DIRS += $(shell brew --prefix)/lib

#NCCL acceleration switch (uncomment to build with NCCL)#https://github.com/NVIDIA/nccl (last tested version: v1.2.3-1+cuda8.0)#USE_NCCL := 1

#Uncomment to use `pkg-config` to specify OpenCV library paths.#(Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)#USE_PKG_CONFIG := 1

#N.B. both build and distribute dirs are cleared on `make clean`

BUILD_DIR :=build

DISTRIBUTE_DIR :=distribute#Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171#DEBUG := 1

#The ID of the GPU that ‘make runtest‘ will use to run unit tests.

TEST_GPUID :=0#enable pretty build (comment to see full commands)

Q ?= @

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值