FFT 算法的实质是把一长序列的 DFT 计算分割为较短序列的 DFT 计算,对于基2算法而言,是把序列每次一分为二,最后分割成两点 DFT,也可以采用别的分割法,每次一分为三,四,五等,就得到了基3,基4,基5等算法,其中基4算法由于具备某些优点,应用价值较大。然而许多文献在阐述 FFT 算法时,重点都放在基2算法上,对于基4算法或者过于简略,或者比较晦涩
凡是可以利用傅里叶变换来进行分析、综合、变换的地方,都可以利用FFT算法及运用数字计算技术加以实现。FFT在数字通信、语音信号处理、图像处理、匹配滤波以及功率谱估计、仿真、系统分析等各个领域都得到了广泛的应用。但不管FFT在哪里应用,一般都以卷积积分或相关积分的具体处理为依据,或者以用FFT作为连续傅里叶变换的近似为基础。
离散傅里叶变换(DFT)
为了再科学计算和数字信号处理等领域使用计算机进行傅里叶变换,必须将函数定义在离散点而非连续域内,且满足有限性或周期性条件。这种情况下,使用离散傅里叶变换。
快速离散傅里叶变换(FFT)
快速傅里叶变换计算离散傅里叶变换的一种快速算法,简称FFT。快速傅里叶变换是1965年由J.W库利和T.W.图基提出的。采用这种算法能使计算机计算离散傅里叶变换所需要的乘法次数大为减少,特别是被变换的抽样点数N越多,FFT算法计算量的节省就越显著。
基2时分蝶式运算定理<