signature=36abb3540298ef9a06f37555ca88ab5e,Deformations of Fuchsian AdS representations are Quasi-Fu...

本文研究了有限生成群Γ在SO(2,n)中的表示空间,特别是准Fuchsian表示。这些表示是忠实的、离散的,并保持双曲空间AdS_n的因果子集。我们证明准Fuchsian表示构成了表示空间的一个连通组件。这一结果基于Gromov超平面不变性的因果性质。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要:

Let $\\Gamma$ be a finitely generated group, and let $\\op{Rep}(\\Gamma,\\SO(2,n))$ be the moduli space of representations of $\\Gamma$ into $\\SO(2,n)$($n \\geq 2$). An element $ho: \\Gamma o \\SO(2,n)$ of $\\op{Rep}(\\Gamma,\\SO(2,n))$ is extit{quasi-Fuchsian} if it is faithful, discrete, preserves anacausal subset in the conformal boundary $\\Ein_n$ of the anti-de Sitter space;and if the associated globally hyperbolic anti-de Sitter space is spatiallycompact - a particular case is the case of extit{Fuchsian representations},i.e. composition of a faithfull, discrete and cocompact representation $ho_f:\\Gamma o \\SO(1,n)$ and the inclusion $\\SO(1,n) \\subset \\SO(2,n)$. In\\cite{merigot} we proved that quasi-Fuchsian representations are preciselyrepresentations which are Anosov as defined in \\cite{labourie}. In the presentpaper, we prove that quasi-Fuchsian representations form a connected componentof $\\op{Rep}(\\Gamma, \\SO(2,n))$. This is an almost direct corollary of thefollowing result: let $\\Gamma$ be the fundamental group of a globallyhyperbolic spacetime locally modeled on $\\AdS_n$, and let $ho: \\Gamma o\\SO_0(2,n)$ be the holonomy representation. Then, if $\\Gamma$ is Gromovhyperbolic, the $ho(\\Gamma)$-invariant achronal limit set in $\\Ein_n$ isacausal.

展开

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值