无偏估计
在概率论和数量统计中,学习过无偏估计,最近在学习论文时候,也经常论文中提到无偏估计。虽然对无偏估计有所了解,但是还是有些问题:
1)总体期望的无偏估计量是样本均值x-,总体方差的无偏估计是样本方差S^2,为什么样本方差需要除以n-1,而不是除以n;
2)样本在总体中是怎样的抽样过程,是放回抽样,是随机抽样,还是不放回抽样等等。
为了解决这个问题,首先来回忆一下什么叫无偏估计:
无偏估计是参数的样本估计值的期望值等于参数的真实值。估计量的数学期望等于被估计参数,则称此为无偏估计。
设A'=g(X1,X2,...,Xn)是未知参数A的一个点估计量,若A'满足
E(A')=
A
则称A'为A的无偏估计量,否则为有偏估计量。
注:无偏估计就是系统误差为零的估计。
由于公式A'=g(X1,X2,...,Xn)中的X1,X2,...,Xn一般为一次抽样的结果,没有明确是怎么抽样的一个过程,所以导致不好理解为什么A'就是A的无偏估计量,特别是很难举出实例来给与证明。经过自己的查阅资料和理解,实际上无偏估计量可以理解如下:
简单的理解,无偏估计量就是:在样本中进行n次随机的抽样,每次抽样都可以计算出一个对某一个参数的点估计量,计算n次,得到n个点估计量,然后对n个点估计量计算期望,得到的值和需要估计的总体参数相等,则称n中的任何点估计量为总体参数的无偏估计量。
能否举出一个例子呢?因为实际的应用中总体是不知道,只有样本,这能够举例子吗?是可以的,不妨设总体容量为3,样本容量为2,计算出总体方差的无偏估计为样本方差,而且样本方差是除以n-1,而不是除以n。

上图为手算的两个例子,说明了

本文探讨了无偏估计的概念,并通过Matlab代码解释了为什么样本方差需要除以n-1而非n。通过创建不同的样本大小和总体容量,计算样本方差的期望值,证明样本方差作为总体方差的无偏估计量。
最低0.47元/天 解锁文章
2095

被折叠的 条评论
为什么被折叠?



