matlab 仪表设计,求指针仪表的图形识别系统用LABVIEW和MATLAB完成的设计? 爱问知识人...

本文介绍了一种使用BP神经网络进行语音信号分类的方法。通过对四类语音信号进行特征提取与归一化处理,利用BP神经网络进行训练,并评估了网络的分类效果。

%% 清空环境变量

clc

clear

%% 训练数据预测数据提取及归一化

%下载四类语音信号

load data1 c1

load data2 c2

load data3 c3

load data4 c4

%四个特征信号矩阵合成一个矩阵

data(1:500,:)=c1(1:500,:);

data(501:1000,:)=c2(1:500,:);

data(1001:1500,:)=c3(1:500,:);

data(1501:2000,:)=c4(1:500,:);

%从1到2000间随机排序

k=rand(1,2000);

[m,n]=sort(k);

%输入输出数据

input=data(:,2:25);

output1 =data(:,1);

%把输出从1维变成4维

for i=1:2000

switch output1(i)

case 1

output(i,:)=[1 0 0 0];

case 2

output(i,:)=[0 1 0 0];

case 3

output(i,:)=[0 0 1 0];

case 4

output(i,:)=[0 0 0 1];

end

end

%随机提取1500个样本为训练样本,500个样本为预测样本

input_train=input(n(1:1500),:)';

output_train=output(n(1:1500),:)';

input_test=input(n(1501:2000),:)';

output_test=output(n(1501:2000),:)';

%输入数据归一化

[inputn,inputps]=mapminmax(input_train);

%% 网络结构初始化

innum=24;

midnum=25;

outnum=4;

%权值初始化

w1=rands(midnum,innum);

b1=rands(midnum,1);

w2=rands(midnum,outnum);

b2=rands(outnum,1);

w2_1=w2;w2_2=w2_1;

w1_1=w1;w1_2=w1_1;

b1_1=b1;b1_2=b1_1;

b2_1=b2;b2_2=b2_1;

%学习率

xite=0。

1

alfa=0。01;

%% 网络训练

for ii=1:10

E(ii)=0;

for i=1:1:1500

%% 网络预测输出

x=inputn(:,i);

% 隐含层输出

for j=1:1:midnum

I(j)=inputn(:,i)'*w1(j,:)' b1(j);

Iout(j)=1/(1 exp(-I(j)));

end

% 输出层输出

yn=w2'*Iout' b2;

%% 权值阀值修正

%计算误差

e=output_train(:,i)-yn;

E(ii)=E(ii) sum(abs(e));

%计算权值变化率

dw2=e*Iout;

db2=e';

for j=1:1:midnum

S=1/(1 exp(-I(j)));

FI(j)=S*(1-S);

end

for k=1:1:innum

for j=1:1:midnum

dw1(k,j)=FI(j)*x(k)*(e(1)*w2(j,1) e(2)*w2(j,2) e(3)*w2(j,3) e(4)*w2(j,4));

db1(j)=FI(j)*(e(1)*w2(j,1) e(2)*w2(j,2) e(3)*w2(j,3) e(4)*w2(j,4));

end

end

w1=w1_1 xite*dw1' alfa*(w1_1-w1_2);

b1=b1_1 xite*db1' alfa*(b1_1-b1_2);

w2=w2_1 xite*dw2' alfa*(w2_1-w2_2);

b2=b2_1 xite*db2' alfa*(b2_1-b2_2);

w1_2=w1_1;w1_1=w1;

w2_2=w2_1;w2_1=w2;

b1_2=b1_1;b1_1=b1;

b2_2=b2_1;b2_1=b2;

end

end

%% 语音特征信号分类

inputn_test=mapminmax('apply',input_test,inputps);

for ii=1:1

for i=1:50000

%隐含层输出

for j=1:1:midnum

I(j)=inputn_test(:,i)'*w1(j,:)' b1(j);

Iout(j)=1/(1 exp(-I(j)));

end

fore(:,i)=w2'*Iout' b2;

end

end

%% 结果分析

%根据网络输出找出数据属于哪类

for i=1:500

output_fore(i)=find(fore(:,i)==max(fore(:,i)));

end

%BP网络预测误差

error=output_fore-output1(n(1501:2000))';

%画出预测语音种类和实际语音种类的分类图

figure(1)

plot(output_fore,'r')

hold on

plot(output1(n(1501:2000))','b')

legend('预测语音类别','实际语音类别')

%画出误差图

figure(2)

plot(error)

title('BP网络分类误差','fontsize',12)

xlabel('语音信号','fontsize',12)

ylabel('分类误差','fontsize',12)

%print -dtiff -r600 1-4

k=zeros(1,4);

%找出判断错误的分类属于哪一类

for i=1:500

if error(i)~=0

[b,c]=max(output_test(:,i));

switch c

case 1

k(1)=k(1) 1;

case 2

k(2)=k(2) 1;

case 3

k(3)=k(3) 1;

case 4

k(4)=k(4) 1;

end

end

end

%找出每类的个体和

kk=zeros(1,4);

for i=1:500

[b,c]=max(output_test(:,i));

switch c

case 1

kk(1)=kk(1) 1;

case 2

kk(2)=kk(2) 1;

case 3

kk(3)=kk(3) 1;

case 4

kk(4)=kk(4) 1;

end

end

%正确率

rightridio=(kk-k)。

/kk。

全部

根据原作 https://pan.quark.cn/s/0ed355622f0f 的源码改编 野火IM解决方案 野火IM是专业级即时通讯实时音视频整体解决方案,由北京野火无限网络科技有限公司维护支持。 主要特性有:私有部署安全可靠,性能强大,功能齐全,全平台支持,开源率高,部署运维简单,二次开发友好,方便与第三方系统对接或者嵌入现有系统中。 详细情况请参考在线文档。 主要包括一下项目: 野火IM Vue Electron Demo,演示如何将野火IM的能力集成到Vue Electron项目。 前置说明 本项目所使用的是需要付费的,价格请参考费用详情 支持试用,具体请看试用说明 本项目默认只能连接到官方服务,购买或申请试用之后,替换,即可连到自行部署的服务 分支说明 :基于开发,是未来的开发重心 :基于开发,进入维护模式,不再开发新功能,鉴于已经终止支持且不再维护,建议客户升级到版本 环境依赖 mac系统 最新版本的Xcode nodejs v18.19.0 npm v10.2.3 python 2.7.x git npm install -g node-gyp@8.3.0 windows系统 nodejs v18.19.0 python 2.7.x git npm 6.14.15 npm install --global --vs2019 --production windows-build-tools 本步安装windows开发环境的安装内容较多,如果网络情况不好可能需要等较长时间,选择早上网络较好时安装是个好的选择 或参考手动安装 windows-build-tools进行安装 npm install -g node-gyp@8.3.0 linux系统 nodej...
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值