
由于想把多台AppServer上的日志集中到一台机器,那么应用程序的日志输出位置应该是有规律的、固定的(和研发人员商定), 下面用我做过的一个具体需求举例分析:
日志目录结构:
├── public│ └── release-v0.2.20│ └── sys_log.log
├── serv_arena
│ └── release-v0.1.10├── serv_guild
│ └── release-v0.1.10│ └── sys_log.log
├── serv_name
│ └── release-v0.1.10│ └── sys_log.log
通过日志目录结构可以发现,服务器上运行了public、serv_arena等微服务,微服务目录里是程序版本,程序版本目录可能有多个,程序版本目录中是最终log。
日志原始格式:
这里输出的日志是纯文件格式,有些日志则可能是Json等其它格式,对于不同格式,可以选则不同的parser来处理
研发人员的需求是:
日志到LogServer后,目录结果不变。
下面是具体配置过程
step1:
在三台App Server上和LogServer上都安装Fluentd:
$ curl -L https://toolbelt.treasuredata.com/sh/install-redhat-td-agent3.sh | sh
我当前的版本在安装完成后,会在/etc/td-agent/目录下生成td-agent.conf文件和plugin目录,我通常会再建立一个conf.d目录,并把所有配置文件细分放进去,并在td-agent.d里include进来,这是个人习惯,感觉很清爽。所以目录结构最后为:
# tree /etc/td-agent/
/etc/td-agent/├── conf.d
├── plugin
└── td-agent.conf
step2:
Fluentd已经安装好了,下面就要对其进行配置,三台App Server上的配置是一样的,但是 LogServer上的配置略有不同,因为Fluentd在Logserver
端的角色是接收端。
LogServer端Fluentd配置:
# cat td-agent.conflog_levelinfo
@type forward
port24224bind0.0.0.0
@include/etc/td-agent/conf.d/*.conf
# cat conf.d/raid.conf@typefilepath/mnt/logs/raid/%Y%m%d/${tag[4]}/${tag[5]}.${tag[6]}.${tag[7]}/${tag[8]}_%Y%m%d%H
appendtrue
@typefilepath/mnt/logs/raid/buffer/timekey 1h
chunk_limit_size 5MB
flush_interval 5s
flush_mode interval
flush_thread_count8flush_at_shutdowntrue
这里值得一说的是path选项,这里用到了tag选项来获取一些信息,而tag信息是从AppServer端的Fluentd配置中传过来的,最后path的结果如下:
# tree /mnt/logs/
/mnt/logs/└── raid
├──20200623│ ├── public
│ └── serv_guild
│ └── release-v0.1.10│ └── sys_log_2020062307.log
└── buffer
AppServer端Fluentd配置:
# cat td-agent.conf
@include/etc/td-agent/conf.d/*.conf
@typetailpath/mnt/logs/raid/public/*/*
pos_file /var/log/td-agent/public.log.pos
tag raid.*
@type none
time_format %Y-%m-%dT%H:%M:%S.%L
refresh_interval 5s
@type tail
path /mnt/logs/raid/serv_arena/*/*pos_file/var/log/td-agent/serv_arena.log.pos
tag raid.*
@type none
time_format%Y-%m-%dT%H:%M:%S.%L
@typetailpath/mnt/logs/raid/serv_guild/*/*
pos_file /var/log/td-agent/serv_guild.log.pos
tag raid.*
@type none
time_format %Y-%m-%dT%H:%M:%S.%L
@type tail
path /mnt/logs/raid/serv_name/*/*pos_file/var/log/td-agent/serv_name.log.pos
tag raid.*
@type none
time_format%Y-%m-%dT%H:%M:%S.%L
@type record_transformerhost_param"#{Socket.gethostname}"
@type forwardname raid-logserver
host10.83.36.106port24224
@type single_value
message_key message
add_newlinetrue
这时值得一说的仍然是path和tag选项,我们配置的tag是raid.*,但实际tag的内容到低是什么呢?以致于tag传到LogServer后,我们能对tag进行一系列操作。
raid.*会匹配到path的路径,并把/用.代替,也就是tag raid.* 实际的内容类似:raid.mnt.logs.raid.public.release-v0.2.20.sys_log.log_2020062304.log
这样,我们后续根据tag进行目录配置才成为可能。
这里值得一说的还有format single_value参数, 如果不指定format为single_value,那你看到最终日志是如下这样,前面加了日期和tag, 这通常是我们不需要的,我们需要原样把日志打到LogServer上。message_key是fluentd自动给我们加上的,docker中的message key可能叫log, docker中的message key可能叫log, 如果我们tail的文件没有message key, 此处就不能指定,否则是无法匹配到并进行操作的,add_newline相当于是否换行。

场景2:从LogServer把日志集中导入elasticSearch
通过场景一,日志已经可以集中到LogServer上,通过LogServer就可以进一步把日志导入es或其它的系统了。
这里项目组有了新的需求,需要把在线人数在kibana中出图显示,日志格式为:
{"host":"5x.24x.6x.x","idleLoad":20000,"intVer":2000,"mode":1,"online":0,"onlineLimit":20000,"port":1000,"serverId":2,"serverName":"-game server-","serverType":21,"serviceMode":0,"sn":173221053,"status":1,"updateTime":1594278043935,"ver":"0.2.40.77","zoneId":2}
step1:
编写fluentd配置,把日志传到elasticsearch上(Logserver端配置)
@type elasticsearch
host search-xxxxxxxxxxxxxxxx.es.amazonaws.com
port80logstash_formattruelogstash_prefix game-ccu
default_elasticsearch_version5reconnect_on_errortruereload_connectionsfalsetype_name doc@typefilepath/mnt/logs/raid/online-buffer/chunk_limit_size 5MB
flush_interval 30s
flush_mode interval
flush_thread_count4flush_at_shutdowntrue
收集端配置:
@typetailpath/mnt/logs/raid/game/*/monitor/*
pos_file /var/log/td-agent/online.log.pos
tag online
@type json
refresh_interval 5s
@type forward
name raid-logserver
host 10.83.3x.xx
port 24224
收集端需要注意的是,parse type应该指定为json而不是之前的none,否则传到es的日志带有message这个log key, 用format也无法去掉,因为elasticache插件不支持format,将带有message log key的日志传到es, 不会被es完全解析。
日志传到es后,就可以create index pattern,并创建图表了:

场景3:处理并拆分位于同一文件中的日志并打到ES
对于不同文件中的日志,我们可以使用tail分别抓取,但是如果日志混合在同一个文件中(比如docker的标准输出,就能只输出到同一个文件中)又该如何把日志拆分呢?这里就需要用到fluentd的grep retag等功能,根据关键字,对日志进行过滤,重新标记并执行相关动作。
解决此问题的思路是用fluentd监听多个日志文件,然后对其进行过滤,首先过滤掉output非es的日志,然后对于不同关键字,进行重打tag操作,最后打入es。但值得注意的是,fluentd是不支持多个match匹配相同的tag的,否则只有第一个生效。
开发人员有需求如下:
监听如下三个日志
/mnt/server/videoslotDevServer/logs/pomelo-tracking-social-server-1.log
/mnt/server/videoslotDevServer/logs/pomelo.log
/mnt/server/videoslotDevServer/pomelo-product-social-server-1.log
日志内容实例
{"LOGMSG":"MSGRouter-STC","LOGINDEX":"router","LOGOBJ":"{'type':'s2c_poll_check','token':'','qid':0,'errorCode':0,'list':{'s2c_get_server_time':{'type':'s2c_get_server_time','token':'','qid':0,'serverTime':1595246357723}}}","user_mid":3534,"OUTPUT":"ES","lft":"info","date":"2020-07-20T11:59:17.723Z","time":1595246357723}
1.日志中output值为es的才需要打入es里
2.根据不同的关键字在es建立不同的索引



step1:
Fluent配置文件
# cat slots-multi.conf@typetailkeep_time_keytruepath/mnt/server/videoslotDevServer/logs/pomelo-tracking-social-server-1.log, /mnt/server/videoslotDevServer/logs/pomelo.log, /mnt/server/videoslotDevServer/logs/pomelo-product-social-server-1.log
pos_file/var/log/td-agent/slots_multi.log.pos
tag multi@type json
time_key @timestamp # 日志默认打到es的日志时间不正确,所以我自己给加了一个时间refresh_interval 5s
# 先对output 是es的进行匹配
@typegrep
key OUTPUT
pattern"ES"
emit_invalid_record_to_errorfalse
@type rewrite_tag_filterkey LOGINDEX
pattern/(.+)/# 这里对router coin logic关键字进行匹配,如果是其它关键字,则也可以自动匹配并自动打入es生成索引
tag videoslots.$1
emit_invalid_record_to_errorfalse
@log_level debug
@type elasticsearch
host search-xxxxxxxxxxxxxxxxx.es.amazonaws.com
port80logstash_formattruelogstash_prefix sandbox.${tag}
default_elasticsearch_version7reconnect_on_errortruereload_connectionsfalse
@typefilepath/sgn/logs/videoslots/buffer_multi/chunk_limit_size 5MB
flush_interval 30s
flush_mode interval
flush_thread_count4flush_at_shutdowntrue
Fluentd实则非常灵活,这里还有一种比较啰嗦的写法如下:
@typetailkeep_time_keytruepath/mnt/server/videoslotDevServer/logs/pomelo-tracking-social-server-1.log, /mnt/server/videoslotDevServer/logs/pomelo.log, /mnt/server/videoslotDevServer/logs/pomelo-product-social-server-1.log
pos_file/var/log/td-agent/slots_multi.log.pos
tag multi@type json
time_key @timestamprefresh_interval 5s
@typegrep
key OUTPUT
pattern"ES"
@type copy@type rewrite_tag_filterkey LOGINDEX
pattern/^logic$/tag logic
@type rewrite_tag_filterkey LOGINDEX
pattern/^router$/tag router
@type rewrite_tag_filterkey LOGINDEX
pattern/^coin$/tag coin
@type elasticsearch
@log_level debug
host search-xxxxxxxx.es.amazonaws.com
port80logstash_formattruelogstash_prefix videoslots-logic
default_elasticsearch_version7reconnect_on_errortruereload_connectionsfalse
@typefilepath/sgn/logs/videoslots/buffer_logic/chunk_limit_size 5MB
flush_interval 30s
flush_mode interval
flush_thread_count4flush_at_shutdowntrue
@log_level debug
@type elasticsearch
host search-videoslots-xxxxxxxxxxx.us-west-2.es.amazonaws.com
port80logstash_formattruelogstash_prefix videoslots-router
default_elasticsearch_version7reconnect_on_errortruereload_connectionsfalse
@typefilepath/sgn/logs/videoslots/buffer_router/chunk_limit_size 5MB
flush_interval 30s
flush_mode interval
flush_thread_count4flush_at_shutdowntrue
@log_level debug
@type elasticsearch
host search-videoslots-xxxxxxxxxxx.us-west-2.es.amazonaws.com
port80logstash_formattruelogstash_prefix videoslots-coin
default_elasticsearch_version7reconnect_on_errortruereload_connectionsfalse
@typefilepath/sgn/logs/videoslots/buffer_coin/timekey_use_utctruechunk_limit_size 5MB
flush_interval 30s
flush_mode interval
flush_thread_count4flush_at_shutdowntrue
step2:
到es上create index pattern

建立template,设置索引生成时的默认配置
PUT _template/sandbox_videoslots
{"index_patterns": ["sandbox.videoslots*"], # 要给哪些索引生效此类配置"settings": {"number_of_shards": 1# shard值默认1000, 当前为测试环境,只有一个节点,所以调整shard数量为1
},"mappings": {"properties": {"LOGOBJ": {"type": "text"# 设置LOGOBJ字段的格式为字串格式
}
}
}
}
7版本的es中,提供了im功能(索引管理),可以控制索引数据保存的周期,比如设置router日志可保留30天
场景4:把JAVA日志按指定格式打到ES上
Fluentd提供了对于多行数据的parser,可以用于解析Java Stacktrace Log
当前业务中有两个类型的java log format:
# format12020-07-28 09:47:37,609 DEBUG [system.server] branch:release/v0.2.61getHead name:HEAD,objectId:AnyObjectId[c9766419a4a7b691b4156fbf50]
# format22020-07-28 00:30:59,520 ERROR [SceneHeartbeat-39] [system.error] hanlder execute error msgId:920java.lang.IndexOutOfBoundsException: readerIndex(21) + length(1) exceeds writerIndex(21): PooledSlicedByteBuf(ridx: 21, widx: 21, cap: 21/21, unwrapped: PooledUnsafeDirectByteBuf(ridx: 3, widx: 15, cap: 64))
at io.netty.buffer.AbstractByteBuf.checkReadableBytes0(AbstractByteBuf.java:1451)
at io.netty.buffer.AbstractByteBuf.readByte(AbstractByteBuf.java:738)
at com.cg.raid.core.msg.net.NetMsgHelper.getU32(NetMsgHelper.java:7)
at com.cg.raid.core.msg.net.NetMsgBase.getU32(NetMsgBase.java:79)
at com.cg.raid.core.msg.net.INetMsg.getInts(INetMsg.java:177)
研发期望按如下格式表现日志:
"grok": {"field": "message","patterns": ["%{TIMESTAMP_ISO8601:event_time} %{DATA:level} %{DATA:thread} %{DATA:logger} (?m)%{GREEDYDATA:msg}"],"on_failure": [
{"set": {"field": "grok_error","value": "{{ _ingest.on_failure_message }}"}
}
]
},
Fluentd配置文件:
@typetailpath/mnt/logs/raid/%Y%m%d/publish/*/*
pos_file /var/log/td-agent/publish.log.pos
tag es.raid.publish
@type multiline
format_firstline /\d{4}-\d{1,2}-\d{1,2}/
format1 /^(?\d{4}-\d{1,2}-\d{1,2} \d{1,2}:\d{1,2}:\d{1,2},\d{3}) (?[^\s]+) \[(?.*)\] (?.*)/
refresh_interval 5s
@type tail
path /mnt/logs/raid/%Y%m%d/game/*/*pos_file/var/log/td-agent/game.log.pos
tag es.raid.game@type multiline
format_firstline/\d{4}-\d{1,2}-\d{1,2}/format1/^(?\d{4}-\d{1,2}-\d{1,2} \d{1,2}:\d{1,2}:\d{1,2},\d{3}) (?[^\s]+) \[(?.*)\] \[(?.*)\] (?.*)/
refresh_interval 5s
@typetailpath/mnt/logs/raid/%Y%m%d/server/*/*
pos_file /var/log/td-agent/server.log.pos
tag es.raid.server
@type multiline
format_firstline /\d{4}-\d{1,2}-\d{1,2}/
format1 /^(?\d{4}-\d{1,2}-\d{1,2} \d{1,2}:\d{1,2}:\d{1,2},\d{3}) (?[^\s]+) \[(?.*)\] \[(?.*)\] (?.*)/
refresh_interval 5s
@type tail
path /mnt/logs/raid/%Y%m%d/inter/*
pos_file /var/log/td-agent/inter.log.pos
tag es.raid.inter
@type multiline
format_firstline /\d{4}-\d{1,2}-\d{1,2}/
format1 /^(?\d{4}-\d{1,2}-\d{1,2} \d{1,2}:\d{1,2}:\d{1,2},\d{3}) (?[^\s]+) \[(?.*)\] (?.*)/
refresh_interval 5s
@type tail
path /mnt/logs/raid/%Y%m%d/public/*/*pos_file/var/log/td-agent/public.log.pos
tag es.raid.public@type multiline
format_firstline/\d{4}-\d{1,2}-\d{1,2}/format1/^(?\d{4}-\d{1,2}-\d{1,2} \d{1,2}:\d{1,2}:\d{1,2},\d{3}) (?[^\s]+) \[(?.*)\] \[(?.*)\] (?.*)/
refresh_interval 5s
@typetailpath/mnt/logs/raid/%Y%m%d/arena/*/*
pos_file /var/log/td-agent/arena.log.pos
tag es.raid.arena
@type multiline
format_firstline /\d{4}-\d{1,2}-\d{1,2}/
format1 /^(?\d{4}-\d{1,2}-\d{1,2} \d{1,2}:\d{1,2}:\d{1,2},\d{3}) (?[^\s]+) \[(?.*)\] \[(?.*)\] (?.*)/
refresh_interval 5s
@type tail
path /mnt/logs/raid/%Y%m%d/guild/*/*pos_file/var/log/td-agent/guild.log.pos
tag es.raid.guild@type multiline
format_firstline/\d{4}-\d{1,2}-\d{1,2}/format1/^(?\d{4}-\d{1,2}-\d{1,2} \d{1,2}:\d{1,2}:\d{1,2},\d{3}) (?[^\s]+) \[(?.*)\] \[(?.*)\] (?.*)/
refresh_interval 5s
@typetailpath/mnt/logs/raid/%Y%m%d/name/*/*
pos_file /var/log/td-agent/name.log.pos
tag es.raid.name
@type multiline
format_firstline /\d{4}-\d{1,2}-\d{1,2}/
format1 /^(?\d{4}-\d{1,2}-\d{1,2} \d{1,2}:\d{1,2}:\d{1,2},\d{3}) (?[^\s]+) \[(?.*)\] \[(?.*)\] (?.*)/
refresh_interval 5s
@log_level debug
@type grep
key level
pattern "ERROR"
@log_level debug
@type elasticsearch
host search-xxxxxx.es.amazonaws.com
port 80
logstash_format true
logstash_prefix raid-log-${tag[2]}
default_elasticsearch_version 5
reconnect_on_error true
reload_connections false
type_name doc
@type file
path /mnt/logs/raid/raid_es_buffer/
chunk_limit_size 5MB
flush_interval 5s
flush_mode interval
flush_thread_count 4
flush_at_shutdown true
ES索引设置:
PUT _template/raid-log
{"index_patterns": ["raid-log-*"],"settings": {"number_of_shards": 1},"mappings": {"properties": {"level": {"type": "keyword","doc_values": true},"logger": {"type": "keyword","doc_values": true},"thread": {"type": "keyword","doc_values": true},"message": {"type": "text"}
}
}
}
# 测试环境number_of_shards指定1即可
# text类型比keyword消耗更多cpu资源,但查询更灵活
最后建立index pattern即可。
本文介绍了如何使用Fluentd在多台AppServer上收集日志并上传到LogServer,保持目录结构不变。详细阐述了配置过程,包括AppServer和LogServer的Fluentd配置,以及日志格式转换、导入Elasticsearch和处理混合日志的策略。此外,还展示了如何处理Java日志并按指定格式发送到ES。
918

被折叠的 条评论
为什么被折叠?



