python sklearn库 rnn_如何使用Tensorflow计算RNN和LSTM模型的AUC并生成ROC曲线?

该博客介绍了如何利用Tensorflow训练RNN和LSTM模型进行二元分类,并展示了训练和测试过程。文章讨论了如何在ReLU激活函数下评估AUC并生成ROC曲线的问题,提出了通过计算概率矩阵来获取分类结果的方法,但对ReLU输出是否直接适用于生成ROC曲线表达了疑问。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

我使用一个自定义的预定义函数trainDNN运行RNN和LSTM模型import tensorflow as tf

from tensorflow.contrib.layers import fully_connected

import h5py

import time

from sklearn.utils import shuffle

def trainDNN(path, n_days, n_features, n_neurons,

train_sequences, train_lengths, train_y,

test_sequences, test_y, test_lengths,

lstm=False, n_epochs=50, batch_size=256,

learning_rate=0.0003, TRAIN_REC=8, TEST_REC=8):

# we're doing binary classification

n_outputs = 2

# this is the initial learning rate

# adam optimzer decays the learning rate automatically

# learning_rate = 0.0001

#learning rate decay is determined by epsilon

epsilon = 0.001

# setup the graph

tf.reset_default_graph()

# inputs to the network

X = tf.placeholder(tf.float32, [None, n_days, n_features])

y = tf.placeholder(tf.int32, [None])

seq_length = tf.placeholder(tf.int32, [None])

# the network itself

cell = tf.contrib.rnn.BasicLSTMCell(num_units=n_neurons) if lstm else tf.contrib.rnn.BasicRNNCell(num_units=n_neurons)

outputs, states = tf.nn.dynamic_rnn(cell, X, dtype=tf.float32, sequence_length=seq_length)

logits = fully_connected(states[-1] if lstm else sta

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值