matlab 二元函数 定义,实验五用matlab求二元函数及极值.doc

本文介绍了如何利用MATLAB求解二元函数的极值和最大值最小值。通过定义函数、求解驻点、计算二阶偏导数和判别式,以及使用diff和jacobian命令,可以确定函数的极值点和最值。通过绘制函数曲面和等值线,辅助观察和分析极值情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

实验五用matlab求二元函数及极值

实验五?? 用matlab求二元函数的极值

?

1.计算二元函数的极值

对于二元函数的极值问题,根据二元函数极值的必要和充分条件,可分为以下几个步骤:

步骤1.定义二元函数.

步骤2.求解方程组,得到驻点.

步骤3.对于每一个驻点,求出二阶偏导数

步骤4. 对于每一个驻点,计算判别式,如果,则该驻点是极值点,当为极小值, 为极大值;如果,需进一步判断此驻点是否为极值点; 如果则该驻点不是极值点.

2.计算二元函数在区域D内的最大值和最小值

设函数在有界区域上连续,则在上必定有最大值和最小值。求在上的最大值和最小值的一般步骤为:

步骤1. 计算在内所有驻点处的函数值;

步骤2. 计算在的各个边界线上的最大值和最小值;

步骤3. 将上述各函数值进行比较,最终确定出在内的最大值和最小值。

3.函数求偏导数的MATLAB命令

MATLAB中主要用diff求函数的偏导数,用jacobian求Jacobian矩阵。

?

?

diff(f,x,n)? 求函数f关于自变量x的n阶导数。

jacobian(f,x) 求向量函数f关于自变量x(x也为向量)的jacobian矩阵。可以用help diff, help jacobian查阅有关这些命令的详细信息

例1? 求函数的极值点和极值.

首先用diff命令求z关于x,y的偏导数

>>clear;? syms x y;

>>z=x^4-8*x*y+2*y^2-3;

>>diff(z,x)

>>diff(z,y)

结果为

ans =4*x^3-8*y

??? ans =-8*x+4*y

即再求解方程,求得各驻点的坐标。一般方程组的符号解用solve命令,当方程组不存在符号解时,solve将给出数值解。求解方程的MATLAB代码为:

>>clear;

>>[x,y]=solve('4*x^3-8*y=0','-8*x+4*y=0','x','y')

结果有三个驻点,分别是P(-2,-4),Q(0,0),R(2,4).下面再求判别式中的二阶偏导数:

>>clear;? syms x y;

>>z=x^4-8*x*y+2*y^2-3;

>>A=diff(z,x,2)

>>B=diff(diff(z,x),y)

>>C=diff(z,y,2)

结果为

A=2*x^2

B =-8

??? C =4

由判别法可知和都是函数的极小值点,而点Q(0,0)不是极值点,实际上,和是函数的最小值点。当然,我们可以通过画函数图形来观测极值点与鞍点。

>>clear;

>>x=-5:0.2:5;? y=-5:0.2:5;

>>[X,Y]=meshgrid(x,y);

>>Z=X.^4-8*X.*Y+2*Y.^2-3;

>>mesh(X,Y,Z)

>>xlabel('x'),ylabel('y'),zlabel('z')

结果如图16.5.1

?

图16.5.1? 函数曲面图

可见在图6.1中不容易观测极值点,这是因为z的取值范围为[-500,100],是一幅远景图,局部信息丢失较多,观测不到图像细节.可以通过画等值线来观测极值.

>>contour(X,Y,Z, 600)

>>xlabel('x'),ylabel('y')

结果如图16.5.2

图16.5.2? 等值线图

由图16.5.2可见,随着图形灰度的逐渐变浅,函数值逐渐减小,图形中有两个明显的极小值点和.根据提梯度与等高线之间的关系,梯度的方向是等高线的法方向,且指向函数增加的方向.由此可知,极值点应该有等高线环绕,而点周围没有等高线环绕,不是极值点,是鞍点.

例2 求函数在条件下的极值..构造Lagrange函数

求Lagrange函数的自由极值.先求关于的一阶偏导数

>>clear; syms x y k

>>l=x*y+k*(x+y-1);

>>diff(l,x)

>>diff(l,y)

>>diff(l,k)

得再解方程

>>clear; syms x y k

>>[x,y,k]=solve('y+k=0','x+k=0','x+y-1=0','x','y','k')

得进过判断,此点为函数的极大值点,此时函数达到最大值.

?

例3 抛物面被平面截成一个椭圆,求这个椭圆到原点的最长与最短距离.

这个问题实际上就是求函数

在条件及下的最大值和最小值问题.构造Lagrange函数

求Lagrange函数的自由极值.先求关于的一阶偏导数

>>clear; syms x y z u v

>>l=x^2+y^2+z^2+u*(x^2+y^2-z)+v*(x+y+z-1);

>>diff(l,x)

>>diff(l,y)

>>diff(l,z)

>>diff(l,u)

>>diff(l,v)

再解方程

>>clear;

>>[x,y,z,u,v]=solv

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值