跳板机传数据rz_没有跳板数据科学的职业道路不会给您数据科学的职业

跳板机传数据rz

So, you’re here because you really care about spending your money and wanted an honest review about the Springboard’s bootcamp offerings.

因此,您之所以来到这里,是因为您真的很在乎花钱,并且希望对Springboard的训练营产品进行诚实的评论。

Disclaimer: This is solely based on the experience program operating in India.

免责声明:这完全基于在印度运行的体验计划。

I’m someone who has enrolled in Springboard’s Data Science career track which they call it an intense one which it definitely isn’t.

我是参加Springboard数据科学职业生涯的人 ,他们称其为激烈的课程 ,但肯定不是。

Talking about bootcamp, nothing could be more catchy than the title Get a Job or your money back. It really get someone into thinking that Let’s give it a try. Either way, one would not lose anything. But trust me, you would lose both time as well as money.

说到新兵训练营,没有什么比标题“ 找工作”或您的钱更吸引人了 确实让某人想到让我们尝试一下。 无论哪种方式,都不会丢失任何东西。 但是请相信我,您会浪费时间和金钱。

Knowing where to put your time, focus & energy are the key things to achieve a result. But if you’d rather find out that after putting all it in. You got nothing & it wasn’t worth it. How’d you react?Same is the result of doing a Springboard’s Data science bootcamp.

知道在哪里放置时间,专注力和精力是取得结果的关键。 但是,如果您愿意在全部放入之后发现这一点。您一无所有,这是不值得的。 您如何React?进行Springboard数据科学训练营的结果是相同的。

Yes, you won’t be getting a job after doing that.

是的,这样做之后您将不会找到工作。

Won’t believe that ? Fine. Ask their alumni’s on linkedin.

不相信吗? 精细。 在linkedin上询问他们的校友。

Wait, not all the people have put it on their linkedin. So, If you’re getting a thought of enrolling in their program or any others. Ask their admission counsellor to show their placement results from the previous batches. You won’t even get a handful of names & the students who have enrolled in their program counts to near about 1000 or even more than that as of now. I can give you a list of them incase you want.

等等,并不是所有人都将其放在自己的linkedin上。 因此,如果您考虑加入他们的计划或任何其他计划。 要求他们的招生顾问显示以前批次的安置结果。 您甚至不会得到几个名字,而已经报名参加该计划的学生人数则比现在增加了将近1000甚至更多。 我可以给你一份清单,以备不时之需。

See an example of what HYPE does springboard-india-31m-fund-raise.

请参阅HYPE如何进行springboard-india-31m-fund-raise的示例

Raising funds by taking advantage of the hype would give springboard & other bootcamps a chance to survive in the long term. But in actual it has no industry recognition especially in India. No employer gives a damn, whether you studied the material from SPRINGBOARD or any other fancy bootcamp.

利用炒作筹集资金将为跳板和其他训练营提供长期生存的机会。 但实际上,它并没有得到业界的认可,尤其是在印度。 无论您是学习SPRINGBOARD的材料还是其他任何高级训练营的材料,都没有雇主会该死的。

Springboard has oldest material (created 2015), i.e, irrelevant as of now along with some youtube videos from PyData Conference(2015-16), some medium blog posts, & a bunch of notebooks that are almost irrelevant from a learner’s aspect, are all unchanged from the time of the course’s setup. There is a Huge pile up on new updated material since then from the industry experts, university’s syllabus & rest all others.

Springboard具有最古老的资料(创建于2015年),即到目前为止,与PyData Conference(2015-16)的一些youtube视频,一些中型博客帖子以及一堆从学习者角度来看几乎无关的笔记本都是不相关的与课程设置时间相同。 从那以后,行业专家,大学课程提纲和其他所有内容都大量堆积在新的更新资料上。

Hoping of getting a job after the course.No one, literally no one cares about springboard, the certificate isn’t even worth presenting to the employer because the industry experts doesn’t give a thing about these fancy courses. If the amount of money & effort that springboard spent on advertising & marketing on big platforms, there would be a decent amount of placement if they’d put that on reinventing the course since it’s set-up.

希望在课程结束后找到一份工作。没有人,实际上没有人在乎跳板,证书甚至不值得向雇主出示,因为行业专家对这些花哨的课程一无所知。 如果跳板在大型平台上的广告和营销上花费了大量的金钱和精力,那么自从建立以来,如果他们将其用于重新设计该课程,将会有相当可观的展示位置。

All that matters to an employer is showcasing your actual real world projects.And, when I say real world, it doesn’t mean solving or re-implementing kaggle problems using old data sets. It means a problem which is unique in itself or an idea for an app which solves a problem that industry care about. If not this, then you’re doing the same as the hundreds of thousands of other people doing out there. What’s the difference then that could make you stand out?

对雇主而言,最重要的是展示您的真实世界项目,而我所说的真实世界并不意味着使用旧数据集解决或重新实现kaggle问题。 这意味着它本身就是一个独特的问题,或者是一个解决行业关注的应用程序的想法。 如果不是这样,那么您所做的与其他成千上万的其他人一样。 那有什么不一样,可以使您脱颖而出?

I can’t comment about other bootcamps as I’m not aware of their program but from linkedin, their is a clear idea that students from other bootcamps are also not happy as well. Enrolling in these fancy bootcamps is just wasting your time, money & effort.

我无法评论其他训练营,因为我不知道他们的计划,但从linkedin开始,他们很清楚地认为其他训练营的学生也不高兴。 参加这些花哨的训练营只会浪费您的时间,金钱和精力。

So, the question arises, then where to start from to get into the field. Well, there are plenty of resources out there which doesn’t even take a penny.

因此,出现了问题,然后从哪里开始进入该领域。 好吧,那里有很多资源,甚至不需要花一分钱。

Why pay for it when most of the resources out there are far better than what the greedy businesses are giving.

当大多数资源远远超过贪婪的企业所提供的资源时,为什么要为此付出代价。

Some of the best resources out there:-

一些最好的资源:

Stanford’s NLP course http://web.stanford.edu/class/cs224n/

斯坦福大学的自然语言处理课程 http://web.stanford.edu/class/cs224n/

Google’s ML crash course https://developers.google.com/machine-learning/crash-course/

Google的ML速成班 https://developers.google.com/machine-learning/crash-course/

Amazon’s ML course https://aws.amazon.com/training/learning-paths/machine-learning/

亚马逊的ML课程 https://aws.amazon.com/training/learning-paths/machine-learning/

https://entrepreneurshandbook.co/googles-genius-49-mo-course-is-about-to-replace-college-degrees-340f459aaa9b

https://entrepreneurshandbook.co/googles-genius-49-mo-course-is-about-to-replace-college-degrees-340f459aaa9b

https://www.amazon.science/latest-news/machine-learning-course-free-online-from-amazon-machine-learning-university

https://www.amazon.science/latest-news/machine-learning-course-free-online-from-amazon-machine-learning-university

Krish Naik’s youtube channel is one of its kind: I would recommend it to enter into this field, to get started & remain updated with, it’s currently the best option out there.

Krish Naik的youtube频道是其中的一种:我建议它进入此字段,开始使用并保持最新状态,这是目前最好的选择。

There are many courses on coursera but I would recommend asking redditors before enrolling into some of them. And, Ofcourse financial aid is applicable to them.

在Coursera上有很多课程,但是我建议在注册其中一些之前先询问Redditor。 并且,当然财政援助适用于他们。

Just because something sounds fancy doesn’t mean you should opt for it. Search, Research, Analyze, connect with alums on linkedin, then decide on the action you want to take.

仅仅因为听起来有些花哨,并不意味着您应该选择它。 搜索,研究,分析,与linkedin上的校友联系,然后决定要采取的行动。

I’ll be happy to answer any clarification, https://www.linkedin.com/in/tej-pratap-09b4299a/

我很乐意回答任何澄清, https://www.linkedin.com/in/tej-pratap-09b4299a/

But I would say don’t waste money on something when you could it for free out there on web.

但是我想说,当您可以在网上免费获得某些东西时,不要浪费金钱。

翻译自: https://medium.com/@tejscript/no-springboards-data-science-career-track-won-t-give-you-a-career-in-data-science-f46bdf0f63ab

跳板机传数据rz

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值