问题 A: 矩形嵌套(最长上升子序列的变形)

题目描述

有n个矩形,每个矩形可以用a,b来描述,表示长和宽。矩形X(a,b)可以嵌套在矩形Y(c,d)中当且仅当a<c,b<d或者b<c,a<d(相当于旋转X90度)。例如(1,5)可以嵌套在(6,2)内,但不能嵌套在(3,4)中。你的任务是选出尽可能多的矩形排成一行,使得除最后一个外,每一个矩形都可以嵌套在下一个矩形内。

输入

第一行是一个正正数N(0<N<10),表示测试数据组数,
每组测试数据的第一行是一个正正数n,表示该组测试数据中含有矩形的个数(n<=1000)
随后的n行,每行有两个数a,b(0<a,b<100),表示矩形的长和宽

输出

每组测试数据都输出一个数,表示最多符合条件的矩形数目,每组输出占一行

样例输入

1
10
1 2
2 4
5 8
6 10
7 9
3 1
5 8
12 10
9 7
2 2

样例输出

5

 

状态方程:dp[i] = max(dp[i], dp[j] + 1)

先搞懂最长上升子序列,解这道题就很简单了。最长上升子序列相关文章:戳这里

AC代码:

#include<iostream>
#include<algorithm>
using namespace std;
struct Rectangle   //长方形的结构体
{
	int x, y;
};
int main()
{
	int t;
	cin >> t;
	while (t--)
	{
		Rectangle R[1005];
		int n;
		cin >> n;
		for (int i = 0; i <n; i++)
		{
		
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值