问题描述:
Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:
- Integers in each row are sorted in ascending from left to right.
- Integers in each column are sorted in ascending from top to bottom.
For example,
Consider the following matrix:
[ [1, 4, 7, 11, 15], [2, 5, 8, 12, 19], [3, 6, 9, 16, 22], [10, 13, 14, 17, 24], [18, 21, 23, 26, 30] ]
Given target = 5
, return true
.
Given target = 20
, return false
.
解决思路:
还有一种方法就是采用分值的思想。以题目给出矩阵为例,查找数字5。仔细观察矩阵,最右上角的数字为15,由于矩阵是列递增,所以数字5不可能在最右侧15这一列,我们便可将这一列不予考虑,将范围缩减了一列。
[1, 4, 7, 11]
[2, 5, 8, 12]
[3, 6, 9, 16]
[10, 13, 14, 17]
[18, 21, 23, 26]
再判断数字11,同样11>5,又缩减一列。数字7同样小于5,在缩减一列,那么现在的矩阵变为:
[1, 4,]
[2, 5]
[3, 6]
[10, 13]
[18, 21]
判断数字4时,由于5>4,目标值肯定不在4所在的行,去点这一行,在进行判断。
[2, 5]
[3, 6]
[10, 13]
[18, 21]
Okay,判断数字5,找到目标值返回。
具体实现代码:
bool searchMatrix(vector<vector<int>>& matrix, int target) {
if (matrix.size() == 0) return false;
int row = matrix.size();
int i = 0, j = matrix[0].size() - 1;
while (i < row && j >= 0)
{
if (matrix[i][j] == target) return true;
else if (matrix[i][j] > target) j--;
else i++;
}
return false;
}