Using the SG3525 PWM Controller - Explanation and Example: Circuit Diagram / Schematic of Push-Pull

本文详细介绍了SG3525 PWM控制器的工作原理和应用,包括其在DC-DC转换器、DC-AC逆变器等中的使用。内容涵盖SG3525的引脚功能、频率计算、软启动以及如何设计一个50kHz推挽配置的电路,用于驱动MOSFET并产生290V的直流输出电压。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

**

5–Using the SG3525 PWM Controller - Explanation and Example: Circuit Diagram / Schematic of Push-Pull Converter

**
PWM is used in all sorts of power control and converter circuits. Some common examples include motor control, DC-DC converters, DC-AC inverters and lamp dimmers. There are numerous PWM controllers available that make the use and application of PWM quite easy. One of the most popular of such controllers is the versatile and ubiquitous SG3525 produced by multiple manufacturers – ST Microelectronics, Fairchild Semiconductors, On Semiconductors, to name a few.

SG3525 is used extensively in DC-DC converters, DC-AC inverters, home UPS systems, solar inverters, power supplies, battery chargers and numerous other applications. With proper understanding, you can soon start using SG3525 yourself in such applications or any other application really that demands PWM control.

Before going on to the description and application, let’s first take a look at the block diagram and the pin layout.
在这里插入图片描述
在这里插入图片描述
Pins 1 (Inverting Input) and 2 (Non Inverting Input) are the inputs to the on-board error amplifier. If you are wondering what that is, you can think of it as a comparator that controls the increase or decrease of the duty cycle for the “feedback” that you associate with Pulse Width Modulation (PWM).

This functions either to increase or decrease the duty cycle depending on the voltage levels on the Inverting and Non-Inverting Inputs – pins 1 and 2 respectively.

When voltage on the Inverting Input (pin 1) is greater than voltage on the Non-Inverting Input (pin 2), duty cycle is decreased.
When voltage on the Non-Inverting Input (pin 2) is greater than voltage on the Inverting Input (pin 1), duty cycle is increased.

The frequency of PWM is dependent on the timing capacitance and the timing resistance. The timing capacitor (CT) is connected between pin 5 and ground. The timing resistor (RT) is connected between pin 6 and ground. The resistance between pins 5 and 7 (RD) determines the deadtime (and also slightly affects the frequency).

T

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值