win7+hadoop2.7.2+maven+idea

前言

今天想在win 7上搭一个Hadoop的开发环境,希望能够直联Hadoop集群并提交MapReduce任务,这里给出相关的关键配置。

步骤

关于idea的安装这里不再赘述,非常简单。

先下载、解压配置好bin和lib目录的hadoop文件,http://pan.baidu.com/s/1i5P8VKp

  • 在win 7上配置Hadoop 到系统环境变量,不懂请自行百度。
  • 建立maven项目,在pom文件中添加相关的依赖
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>CN.GDUT</groupId>
    <artifactId>Hadoop</artifactId>
    <version>1.0-SNAPSHOT</version>

    <properties>
        <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
        <hadoop.version>2.7.2</hadoop.version>
    </properties>
    <dependencies>
        <dependency>
            <groupId>junit</groupId>
            <artifactId>junit</artifactId>
            <version>4.12</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-client</artifactId>
            <version>${hadoop.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-common</artifactId>
            <version>${hadoop.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-hdfs</artifactId>
            <version>${hadoop.version}</version>
        </dependency>
    </dependencies>

</project>

    • 将Hadoop的相关配置文件添加到resources文件夹下

  • 编写WordCount程序,分3个类,Map、Reduce、Driver
  • Map
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
/**
 * Created by William on 2017/10/25 0025.
 */
public class WordcountMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
        //将maptask传给我们的文本内容先转换成String
        String line = value.toString();
        //根据空格将这一行切分成单词
        String[] words = line.split(" ");
        //将单词输出为<单词,1>
        for(String word:words){
            //将单词作为key,将次数1作为value,以便于后续的数据分发,可以根据单词分发,以便于相同单词会到相同的reduce task
            context.write(new Text(word), new IntWritable(1));
        }
    }
}
  • Reduce
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;

/**
 * Created by William on 2017/10/25 0025.
 */
public class WordcountReducer extends Reducer<Text, IntWritable, Text, IntWritable> {

    @Override
    protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
        int count=0;
      /*Iterator<IntWritable> iterator = values.iterator();
      while(iterator.hasNext()){
         count += iterator.next().get();
      }*/

        for(IntWritable value:values){

            count += value.get();
        }

        context.write(key, new IntWritable(count));
    }
}

  • Driver
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

/**
 * Created by William on 2017/10/25 0025.
 */
public class WordcountDriver {
    public static void main(String[] args) throws Exception {
        Configuration conf = new Configuration();

        //是否运行为本地模式,就是看这个参数值是否为local,默认就是local
      conf.set("mapreduce.framework.name", "local");

        //本地模式运行mr程序时,输入输出的数据可以在本地,也可以在hdfs上
        //到底在哪里,就看以下两行配置你用哪行,默认就是file:///
      /*conf.set("fs.defaultFS", "hdfs://mini1:9000/");*/
      conf.set("fs.defaultFS", "file:///");

        //运行集群模式,就是把程序提交到yarn中去运行
        //要想运行为集群模式,以下3个参数要指定为集群上的值
      /*conf.set("mapreduce.framework.name", "yarn");
      conf.set("yarn.resourcemanager.hostname", "mini1");
      conf.set("fs.defaultFS", "hdfs://mini1:9000/");*/
        Job job = Job.getInstance(conf);

//        job.setJar("c:/wc.jar");
        //指定本程序的jar包所在的本地路径
      job.setJarByClass(WordcountDriver.class);

        //指定本业务job要使用的mapper/Reducer业务类
        job.setMapperClass(WordcountMapper.class);
        job.setReducerClass(WordcountReducer.class);

        //指定mapper输出数据的kv类型
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(IntWritable.class);

        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);

        job.setCombinerClass(WordcountReducer.class);

   

        //指定job的输入原始文件所在目录
        FileInputFormat.setInputPaths(job, new Path(args[0]));
        //指定job的输出结果所在目录
        FileOutputFormat.setOutputPath(job, new Path(args[1]));

        //将job中配置的相关参数,以及job所用的java类所在的jar包,提交给yarn去运行
        boolean res = job.waitForCompletion(true);
        System.exit(res?0:1);

    }
}

  • 设置idea运行参数

编辑好输入文本,本地集群都可以,Configuration如下图:


完成!
如果还报IO.NATIVE错误,将bin/hadoop.dll丢到system32去
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值