高斯平滑(模糊)算法原理说明(转)

本文介绍了图像高斯模糊的计算过程。先假设模糊半径和方差,给出对应像素矩阵,以某点为中心,根据模糊半径确定周围点坐标,用二维高斯函数计算权重矩阵并归一化,将各点乘以对应权重后求和得到中心点高斯模糊后的值,对所有点重复此过程可得模糊图像,彩色图像可对RGB通道分别处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

为了便于说明,先假设模糊半径 r = 3 ,方差 sigma = 1.5 ,
*            对应的像素矩阵为:
*            14    15    16
*            24    25    26
*            34    35    36
*            简单一点的说,假设要对某个点进行高斯模糊,则把它视为
*            中心点,坐标为(0,0);然后根据其模糊半径的不同(如,模糊
*            半径为3时),其周围的8个点的(上下左右,两个斜对角)坐标
*            如下((0,0)点为二维坐标轴的原点):
*            (-1,1)  (0,1)  (1,1)                
*            (-1,0)  (0,0)  (1,0)           
*            (-1,-1) (0,-1) (1,-1)
*            然后根据二维高斯函数: G(x,y)=1/(2*pi*sigma^2)*e^(-(x^2+y^2)/(2*sigma^2))
*            计算对应的权重矩阵如下:
*            0.0453542    0.0566406    0.0453542
*            0.0566406    0.0707355    0.0566406
*            0.0453542    0.0566406    0.0453542
*            然后对其归一化:
*            0.0947416    0.1183180    0.0947416
*            0.1183180    0.1477610    0.1183180
*            0.0947416    0.1183180    0.0947416
*            将每个点乘以自己对应的权重:
*            14*0.0947416    15*0.1183180    16*0.0947416
*            24*0.1183180    25*0.1477610    26*0.1183180
*            34*0.0947416    35*0.1183180    36*0.0947416
*            即:
*            1.326380    1.774770    1.515870
*            2.839630    3.694030    3.076270
*            3.221210    4.141130    3.410700
*            将这9个值加起来,所得和值就是中心点的高斯模糊后的值,
*            对所有点重复这个过程,就得到了高斯模糊后的图像,如果
*            图像是彩色图像,可以对RGB通道分别做高斯模糊。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值