19、遥感影像中建成区的准确检测

遥感影像中建成区的准确检测

1. FCN模型分割结果的获取

FCN模型有八个分割掩码,每对掩码之间约有6%的差异,这表明每个块在不同掩码中可能有不同的二进制值。最终的分割结果可通过投票获得。由于每个块在特征图中现在是一个像素,投票过程就转化为统计被确定为建成区的像素数量。计数公式如下:
[T_i = \sum_{j} p_{i}(j)]
其中,(p_{i}(j)) 是根据特定公式在第 (j) 个掩码图中的分割二进制值。根据实验结果,将投票阈值设为4,以在虚警和漏警之间取得平衡。在实际应用中,可根据对虚警和漏警的重视程度调整阈值,阈值范围对整体精度影响较小。

2. 后处理步骤

与经典方法的像素级结果相比,DSCNN、LMB - CNN或FCN只能获得块级结果。而且,建成区是指已开发和建设的区域,需要一定面积大于阈值,小面积的草地、池塘等也应属于建成区。因此,后处理是必要的,以使结果更合理。
- 去除未达面积阈值的区域 :考虑到一些村庄的面积,将建成区的阈值设为5个图像块是合理的,每个块对应64 m × 64 m的区域。此外,建成区内的草坪、水池和山丘应被识别为建成区的一部分,所以小于5个图像块的非建成区也应转换为建成区。
- 处理像素级结果以优化边界
- 简单放大法 :对于像素级结果,仅考虑边缘的美观性,将块级结果的二值图像简单放大到原始大小,插值过程会平滑建成区的边界。
- 获取更精细边界的步骤
1. 对建成区的边界块应用简单线性迭代聚类(SLIC)分割操作

【3D应力敏感度分析拓扑优化】【基于p-范数全局应力衡量的3D敏感度分析】基于伴随方法的有限元分析和p-范数应力敏感度分析(Matlab代码实现)内容概要:本文档介绍了基于伴随方法的有限元分析与p-范数全局应力衡量的3D应力敏感度分析,并结合拓扑优化技术,提供了完整的Matlab代码实现方案。该方法通过有限元建模计算结构在载荷作用下的应力分布,采用p-范数对全局应力进行有效聚合,避免传统方法中应力约束过多的问题,进而利用伴随法高效求解设计变量对应力的敏感度,为结构优化提供关键梯度信息。整个流程涵盖了从有限元分析、应力评估到敏感度计算的核心环节,适用于复杂三维结构的轻量化与高强度设计。; 适合人群:具备有限元分析基础、拓扑优化背景及Matlab编程能力的研究生、科研人员与工程技术人员,尤其适合从事结构设计、力学仿真与多学科优化的相关从业者; 使用场景及目标:①用于实现高精度三维结构的应力约束拓扑优化;②帮助理解伴随法在敏感度分析中的应用原理与编程实现;③服务于科研复现、论文写作与工程项目中的结构性能提升需求; 阅读建议:建议读者结合有限元理论与优化算法知识,逐步调试Matlab代码,重点关注伴随方程的构建与p-范数的数值处理技巧,以深入掌握方法本质并实现个性化拓展。
下载前必看:https://pan.quark.cn/s/9f13b242f4b9 Android 平板设备远程操控个人计算机的指南 Android 平板设备远程操控个人计算机的指南详细阐述了如何运用 Splashtop Remote 应用程序达成 Android 平板设备对个人计算机的远程操控。 该指南被划分为四个环节:首先,在个人计算机上获取并部署 Splashtop Remote 应用程序,并设定客户端密码;其次,在 Android 平板设备上获取并部署 Splashtop Remote 应用程序,并与之建立连接至个人计算机的通道;再次,在 Splashtop Remote 应用程序中识别已部署个人计算机端软件的设备;最后,运用平板设备对个人计算机实施远程操控。 关键点1:Splashtop Remote 应用程序的部署与配置* 在个人计算机上获取并部署 Splashtop Remote 应用程序,可通过官方网站或其他获取途径进行下载。 * 部署结束后,必须输入客户端密码,该密码在平板控制计算机时用作验证,密码长度至少为8个字符,且需包含字母与数字。 * 在配置选项中,能够设定是否在设备启动时自动运行客户端,以及进行互联网搜索设置。 关键点2:Splashtop Remote 应用程序的 Android 版本获取与部署* 在 Android 平板设备上获取并部署 Splashtop Remote 应用程序,可通过 Google Play Store 或其他获取途径进行下载。 * 部署结束后,必须输入客户端密码,该密码用于连接至个人计算机端软件。 关键点3:运用 Splashtop Remote 远程操控个人计算机* 在 Splashtop Remote 应用程序中识别...
先看效果: https://pan.quark.cn/s/7baef05d1d08 在信息技术范畴内,语音识别是一项核心的技术,它赋予计算机或设备解析和处理人类语音输入的能力。 本研究项目运用了MFCC(Mel Frequency Cepstral Coefficients)与VQ(Vector Quantization)算法,借助VC++6.0的MFC(Microsoft Foundation Classes)库,开发出一个图形用户界面(GUI),从而达成基础的语音识别功能。 接下来将具体分析这些技术及其应用。 **MFCC特征提取**MFCC是语音信号处理中的一个标准方法,用于将复杂的语音波形转换成一组便于处理的数据参数。 MFCC模拟人类听觉系统对声音频率的感知模式,通过梅尔滤波器组对声音频谱进行分段处理,进而计算每个滤波器组的倒谱系数。 该过程包含以下环节:1. **预加重**:旨在削弱人声的低频响应部分,同时增强高频成分的强度。 2. **分帧和窗函数**:将语音信号分割成多个短时帧,并应用窗函数以降低帧与帧之间的相互干扰。 3. **梅尔尺度滤波**:采用梅尔滤波器组对每一帧进行剖析,获取梅尔频率谱。 4. **取对数**:鉴于人耳对声音强度的感知呈现非线性特征,因此对梅尔频率谱取对数操作以更好地符合人类听觉系统。 5. **离散余弦变换(DCT)**:对对数谱实施DCT运算,提取主要特征,通常选取前12-20个系数作为MFCC特征。 6. **动态特性**:为了捕捉语音的时域变化特征,还可计算MFCC特征的差分值和二阶差分值。 **VQ识别算法**VQ是一种数据压缩方法,在语音识别领域中常用于特征矢量的量化处理。 其基本理念是将高维度的MFCC特征向量映射到一个小型、预...
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值